Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
-
Michael Huppmann
, Sebastian Stark and Walter Reimers
Abstract
A study of the internal strain (stress) evolution during uni-axial cyclic deformation along the prior extrusion axis with fully reversed total constant strain amplitudes εA (0.5% < εA < 5%) was investigated by using in-situ high energy synchrotron X-ray diffraction. The deformation is dominated by {1012} 〈1011〉 twinning and detwinning mechanisms within the textured hot extruded magnesium alloy AZ31. The results show a strong load partitioning between the internal stresses of (1010) and (1120) parent grains and of the (0002) twinned daughter grains that are relaxed. Following the evolution of the twinning/detwinning behavior and the hkil dependent microstresses as a function of cycling numbers, two different regimes were observed whereby it was found that the transition between these regimes is marked by an applied strain amplitude of eA = 0.625%.
References
[1] S. B.Yi, C. H. J.Davies, H.-G.Brokmeier, R. E.Bolmaro, K. U.Kainer, J.Homeyer: Acta Mater.54 (2006) 549. 10.1016/j.actamat.2005.09.024Search in Google Scholar
[2] S. R.Agnew, C. N.Tomé, D. W.Brown, T. M.Holden, S. C.Vogel: Scripta Mater.48 (2003) 1003. 10.1016/S1359-6462(02)00591-2Search in Google Scholar
[3] D. W.Brown, S. R.Agnew, M. A. M.Bourke, T. M.Holden, S. C.Vogel, C. N.Tomé: Mater. Sci. Eng. A399 (2005) 1. 10.1016/j.msea.2005.02.016Search in Google Scholar
[4] X. Y.Lou, M.Li, R. K.Boger, S. R.Agnew, R. H.Wagoner: Int. J. Plast.23 (2007) 44. 10.1016/j.ijplas.2006.03.005Search in Google Scholar
[5] M. R.Barnett: Mater. Sci. Eng. A464 (2007) 1. 10.1016/j.msea.2006.12.037Search in Google Scholar
[6] T.Al-Samman, G.Gottstein: Mater. Sci. Eng. A488 (2008) 406. 10.1016/j.msea.2007.11.056Search in Google Scholar
[7] D. W.Brown, A.Jain, S. R.Agnew, B.Clausen: Mater. Sci. Forum539–543 (2007) 3407. 10.4028/www.scientific.net/MSF.539-543.3407Search in Google Scholar
[8] S.Begum, D. L.Chen, S.Xu, A. A.Luo: Int. J. Fat.31 (2009) 726. 10.1016/j.ijfatigue.2008.03.009Search in Google Scholar
[9] H.Zenner, F.Renner: Int. J. Fat.24 (2002) 1255. 10.1016/S0142-1123(02)00042-7Search in Google Scholar
[10] U.Noster, B.Scholtes: Z. Metallkd.94 (2003) 559.Search in Google Scholar
[11] U.Noster: Zum Verformungsverhalten der Magnesiumbasislegierungen AZ31 und AZ91 bei zyklischer und quasi-statischen Beanspruchungen im Temperaturbereich 20–300°C, PhD thesis, Universitét Kassel (2003).Search in Google Scholar
[12] L.Wu, G. M.Stoica, H.-H.Liao, S. R.Agnew, E. A.Payzant, G.Wang, D. E.Fielden, L.Chen, P. K.Liaw: Metall. Mater. Trans. A38 (2007) 2283. 10.1007/s11661-007-9123-8Search in Google Scholar
[13] J.Gibmeier, M.Klaus, B.Scholtes: Mater. Sci. Forum571–572 (2008) 195. 10.4028/www.scientific.net/MSF.571-572.195Search in Google Scholar
[14] L.Wu, A.Jain, D. W.Brown, G. M.Stoica, S. R.Agnew, B.Clausen, D. E.Fielden, P. K.Liaw: Acta Mater.56 (2008) 688. 10.1016/j.actamat.2007.10.030Search in Google Scholar
[15] L.Chen, C.Wang, W.Wu, Z.Liu, G. M.Stoica, L.Wu, P. K.Liaw: Metall. Mater. Trans. A38 (2007) 2235. 10.1007/s11661-007-9181-ySearch in Google Scholar
[16] L.Wu, S. R.Agnew, D. W.Brown, G. M.Stoica, B.Clausen, A.Jain, D. E.Fielden, L.Chen, P. K.Liaw: Acta Mater.56 (2008) 3699. 10.1016/j.actamat.2008.04.006Search in Google Scholar
[17] S. R.Agnew, M. H.Yoo, C. N.Tomé: Acta Mat.49 (2001) 4277. 10.1016/S1359-6454(01)00297-XSearch in Google Scholar
[18] S. R.Agnew, D. W.Brown, C. N.Tomé: Acta Mater.54 (2006) 4841. 10.1016/j.actamat.2006.06.020Search in Google Scholar
[19] B.Clausen, C. N.Tomé, D. W.Brown, S. R.Agnew: Acta Mater.56 (2008) 2456. 10.1016/j.actamat.2008.01.057Search in Google Scholar
[20] M. H.Yoo: Metall. Trans. A12 (1981) 409.10.1007/BF02648537Search in Google Scholar
[21] M. H.Yoo, S. R.Agnew, J. R.Morris, K. M.Ho: Mater. Sci. Eng. A319–321 (2005) 87. 10.1016/S0921-5093(01)01027-9Search in Google Scholar
[22] M. H.Yoo, J. R.Morris, K. M.Ho, S. R.Agnew: Metall. Mater. Trans. A33 (2002) 813.Search in Google Scholar
[23] J.Jiang, A.Godfrey, W.Liu, Q.Liu: Mater. Sci. Eng. A483–484 (2008) 576. 10.1016/j.msea.2006.07.175Search in Google Scholar
[24] S. R.Agnew, Ö.Duygulu: Int. J. Plast.21 (2005) 1161. 10.1016/j.ijplas.2004.05.018Search in Google Scholar
[25] R. A.Lebensohn, C. N.Tome: Acta Metall. Mater.41 (1993) 2611. 10.1016/0956-7151(93)90130-KSearch in Google Scholar
[26] P. A.Turner, C. N.Tome: Acta Metall. Mater.42 (1994) 4143. 10.1016/0956-7151(94)90191-0Search in Google Scholar
[27] P. A.Turner, N.Christodoulou, C. N.Tome: Int. J. Plast.11 (1995) 251. 10.1016/0749-6419(94)00048-4Search in Google Scholar
[28] S.Müller, K.Müller, T.Huichang, P.Wolter, W.Reimers, in K.U. Kainer (Ed.): Proceedings of the 7th International Conference Magnesium Alloys and Their Applications, Wiley-VCH, Weinheim (2006) 406.Search in Google Scholar
[29] C.Genzel, I. A.Denks, J.Gibmeier, M.Klaus, G.Wagener: Nucl. Instrum. Methods Phys. Research A578 (2007) 23. 10.1016/j.nima.2007.05.209Search in Google Scholar
[30] I. A.Denks, C.Genzel: Nucl. Instrum. Methods Phys. Research B262 (262) (2007) 87. 10.1016/j.nimb.2007.05.007Search in Google Scholar
[31] E.Macherauch, P.Müller: Z. Angewandte Phys.13 (1961) 305.Search in Google Scholar
[32] J. D.Eshelby: Proc. R. Soc. London A241 (1957) 376. 10.1098/rspa.1957.0133Search in Google Scholar
[33] E.Kröner: Z. Phys.151 (1958) 504. 10.1007/BF01337948Search in Google Scholar
[34] M. A.Meyers, V.Vöhringer, A.Lubarda: Acta Mater.49 (2001) 4025. 10.1016/S1359-6454(01)00300-7Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News