Home Adsorption of nucleotides on the rutile (110) surface
Article
Licensed
Unlicensed Requires Authentication

Adsorption of nucleotides on the rutile (110) surface

  • Sibylle Gemming , Andrey N. Enyashin , Johannes Frenzel and Gotthard Seifert
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The present study aims at the computer-aided design of suitably functionalized oxide surfaces for the integration of nanotubes into multi-purpose nano-electronic devices. The adsorption of the nucleotide cytidine monophosphate on the rutile (110) surface is investigated by density-functional-based tight-binding calculations. The nucleotide favors anchoring with two oxygen atoms of its phosphate part. Adsorption occurs preferentially at two neighboring five-fold coordinated Ti atoms along the [001] direction, thus opening a pathway to an ordered adsorption of nanotubes along [001]. The electronic densities of state show that the aromatic part of the cytidine residue remains unchanged upon adsorption on rutile. This implies that no significant changes occur in the nanotube binding capacity by -stacking of the aromatic part, hence, nucleotide-functionalized oxide surfaces are ideal substrates for the ordered, stable and electronically and chemically inert immobilization of nanotubes.


* Correspondence address, PD Dr. Sibylle Gemming, Forschungszentrum Dresden-Rossendorf, POB 51 01 19, D-01314 Dresden, Germany, Tel.: +49 351 260 2470, Fax: +49 351 260 3285, E-mail:

References

[1] D.Tománek: J. Phys.: Condens. Matter.17 (2005) R413. 10.1088/0953-8984/17/13/R01Search in Google Scholar

[2] Y.-K.Kwon, D.Tománek, S.Iijima: Phys. Rev. Lett.82 (1999) 1470. 10.1103/PhysRevLett.82.1470Search in Google Scholar

[3] A.M.Popov, E.Bichoutskaia, Y.E.Lozovik, A.S.Kulish: phys. stat. sol. (a)204 (2007) 1911.10.1002/pssa.200675322Search in Google Scholar

[4] M.S.Dresselhaus, G.Dresselhaus, P.Avouris (Eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Appl. Phys. 80, Springer-Verlag, Berlin Heidelberg (2001).10.1007/3-540-39947-XSearch in Google Scholar

[5] W.Lu, C.M.Lieber: Nature Mater.6 (2007) 841. 10.1038/nmat2028Search in Google Scholar PubMed

[6] J.-C.Charlier, X.Blase, S.Roche: Rev. Mod. Phys.79 (2007) 677. 10.1103/RevModPhys.79.677Search in Google Scholar

[7] J.Appenzeller: Proc. IEEE96 (2008) 201. 10.1109/JPROC.2007.911051Search in Google Scholar

[8] Z.H.Chen, D.Farmer, S.Xu, R.Gordon, P.Avouris, J.Appenzeller: IEEE Electron Device Letters29 (2008) 183. 10.1109/LED.2007.914069Search in Google Scholar

[9] K.Balasubramanian, E.J.H.Lee, R.T.Weitz, M.Burghard, K.Kern: phys. stat. sol. (a)205 (2008) 633.10.1002/pssa.200723410Search in Google Scholar

[10] M.Zheng, A.Jagota, M.S.Strano, A.P.Santos, P.Barone, S.G.Chou, B.A.Diner, M.S.Dresselhaus, R.S.McLean, G.B.Onoa, G.G.Samsonidze, E.D.Semke, M.Usrey, D.J.Walls: Science302 (2003) 1545. 10.1126/science.1091911Search in Google Scholar PubMed

[11] S.R.Lustig, A.Jagota, C.Khripin, M.Zheng: J. Phys. Chem. B109 (2005) 2559. 10.1021/jp0452913Search in Google Scholar PubMed

[12] X.Tu, M.Zheng: Nano. Res.1 (2008) 185. 10.1007/s12274-008-8022-7Search in Google Scholar

[13] U.M.Graham, A.Dozier, R.A.Khatri, M.C.Bahome, L.L.Jewell, D.Mhlanga, N.J.Coville, B.H.Davis: Catal. Lett.129 (2009) 39. 10.1007/s10562-009-9866-5Search in Google Scholar

[14] J.M.Qian, K.Lu: J. Nanosci. Nanotechnol.9 (2009) 5816. 10.1166/jnn.2009.1228Search in Google Scholar PubMed

[15] Y.Xu, X.Mi, N.R.Aluru: Appl. Phys. Lett.95 (2009) 113116. 10.1063/1.3231922Search in Google Scholar

[16] A.N.Enyashin, S.Gemming, G.Seifert: Nanotechnology18 (2007) 245702. 10.1088/0957-4484/18/24/245702Search in Google Scholar

[17] D.Nepal, J.-I.Sohn, W.K.Aicher, S.Lee, K.E.Geckeler: Biomacromolecules6 (2005) 2919. 10.1021/bm050380mSearch in Google Scholar PubMed

[18] M.Zheng, A.Jagota, E.D.Semke, B.A.Diner, R.S.Mclean, S.R.Lustig, R.E.Richardson, N.G.Tassi: Nature Materials2 (2003) 338. 10.1038/nmat877Search in Google Scholar PubMed

[19] K.Keren, R.S.Berman: Science302 (2003) 1380. 10.1126/science.1091022Search in Google Scholar PubMed

[20] K.Maehashi, K.Matsumoto, Y.Takamura, E.Tamiya: Electroanalysis21 (2009) 1285. 10.1002/elan.200804552Search in Google Scholar

[21] Y.Lu, S.Bangsaruntip, X.Wang, L.Zhang, Y.Nishi, H.Dai: J. Am. Chem. Soc.128 (2006) 3518. 10.1021/ja058836vSearch in Google Scholar PubMed

[22] C.Staii, A.T.Johnson, M.Chen, A.Gelperin: NanoLett.5 (2005) 1774. 10.1021/nl051261fSearch in Google Scholar PubMed

[23] M.Trojanowicz: Trends in Anal. Chem.25 (2006) 480.10.1016/j.trac.2005.11.008Search in Google Scholar

[24] A.Star, E.Tu, J.Niemann, J.-C.P.Gabriel, C.S.Joiner, C.Valcke: PNAS103 (2006) 921. 10.1073/pnas.0504146103Search in Google Scholar PubMed PubMed Central

[25] G.Seifert: J. Phys. Chem. A111 (2007) 5622. 10.1021/jp069056rSearch in Google Scholar PubMed

[26] T.Frauenheim, G.Seifert, M.Elstner, Z.Hajnal, G.Jungnickel, D.Porezag, S.Suhai, R.Scholz: phys. stat. sol. (b)217 (2000) 41.Search in Google Scholar

[27] M.Elstner, T.Frauenheim, E.Kaxiras, G.Seifert, S.Suhai: phys. stat. sol. (b)217 (2000) 357.Search in Google Scholar

[28] R.Luschtinetz, A.F.Oliveira, J.Frenzel, J.-O.Joswig, G.Seifert, H.A.Duarte: Surf. Sci.602 (2008) 1347.10.1016/j.susc.2008.01.035Search in Google Scholar

[29] S.Gemming, R.Luschtinetz, W.Alsheimer, G.Seifert, C.Loppacher, L.M.Eng: J. Computer-Aided Mater. Des.14 (2007) 211.10.1007/s10820-007-9076-7Search in Google Scholar

[30] A.N.Enyashin, G.Seifert: phys. stat. sol. (b)242 (2005) 1361.10.1002/pssb.200540026Search in Google Scholar

[31] A.N.Enyashin, G.Seifert: Phys. Chem. Chem. Phys.9 (2007) 5772. 10.1039/b712094jSearch in Google Scholar PubMed

[32] S.Manohar, T.Tang, A.Jagota: J. Phys. Chem. C111 (2007) 17835. 10.1021/jp071316xSearch in Google Scholar

[33] C.Y.Khripin, S.Manohar, M.Zheng, A.Jagota: J. Phys. Chem. C113 (2009) 13616. 10.1021/jp903197dSearch in Google Scholar

[34] U.Diebold: Surf. Sci. Reports48 (2003) 53. 10.1016/S0167-5729(02)00100-0Search in Google Scholar

[35] G.Charlton, P.B.Howes, C.L.Nicklin, P.Steadman, J.S.G.Taylor, C.A.Muryn, S.P.Harte, J.Mercer, R.McGrath, D.Norman, T.S.Turner, G.Thornton: Phys. Rev. Lett.78 (1997) 495. 10.1103/PhysRevLett.78.495Search in Google Scholar

[36] D.C.Langreth, B.I.Lundqvist, S.D.Chakarova-Käck, V.R.Cooper, M.Dion, P.Hyldgaard, A.Kelkkanen, J.Kleis, L.Kong, S.Li, P.G.Moses, E.Murray, A.Puzder, H.Rydberg, E.Schröder, T.Thonhauser, J.Phys: Condens. Matter21 (2009) 084203. 10.1088/0953-8984/21/8/084203Search in Google Scholar

[37] N.M.Harrison, X.G.Wang, J.Muscat, M.Scheffler: Faraday Discuss.114 (1999) 305. 10.1039/a906386bSearch in Google Scholar

[38] M.Ramamoorthy, D.Vanderbilt: Phys. Rev. B49 (1994) 16721. 10.1103/PhysRevB.49.16721Search in Google Scholar

[39] S.P.Bates, G.Kresse, M.J.Gillan: Surf. Sci.385 (1997) 386. 10.1016/S0039-6028(97)00265-3Search in Google Scholar

[40] S.Gowtham, R.H.Schleicher, R.Pandey, S.P.Karna, R.Ahuja: Nanotechnology19 (2008) 125701. 10.1088/0957-4484/19/12/125701Search in Google Scholar PubMed

[41] H.Wang, A.Ceulemans: Phys. Rev. B79 (2009) 195419. 10.1103/PhysRevB.79.195419Search in Google Scholar

[42] M.Nilsing, P.Persson, L.Ojamäe: Chem. Phys. Lett.415 (2005) 375. 10.1016/j.cplett.2005.08.154Search in Google Scholar

[43] U.Diebold, J.Lehman, T.Mahmoud, M.Kuhn, G.Leonardelli, W.Hebenstreit, M.Schmid, P.Varga: Surf. Sci.411 (1998) 137. 10.1016/S0039-6028(98)00356-2Search in Google Scholar

[44] P.Zapol, L. A.Curtiss, J. Comp. Theo. Nanosci.4 (2007) 222.10.1166/jctn.2007.2308Search in Google Scholar

[45] D.Andeen, F. F.Lange, Int. J. Mater. Res. (2007) 1222.10.3139/146.101587Search in Google Scholar

[46] M.Nilsing, S.Lunell, P.Persson, L.Ojamäe: Surf. Sci.582 (2005) 49. 10.1016/j.susc.2005.02.044Search in Google Scholar

[47] M.Nilsing, P.Persson, S.Lunell, L.Ojamäe: J Phys. Chem. C111 (2007) 12116. 10.1021/jp072253lSearch in Google Scholar

[48] R.Luschtinetz, J.Frenzel, T.Milek, G.Seifert: J. Phys. Chem. C (2009) 5730. 10.1021/jp8110343Search in Google Scholar

Received: 2008-12-16
Accepted: 2009-11-12
Published Online: 2013-05-31
Published in Print: 2010-06-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. IJMR's most downloaded papers from 2008 to the present: a review
  5. Basic
  6. Effect of temperature and strain rate on strain hardening and deformation mechanisms of high manganese austenitic steels
  7. Size effects resulting from local strain hardening; microstructural evaluation of Fe-3% Si and Cu deformed in tension and deep drawing using orientation gradient mapping (OGM)
  8. Microstructure of super-austenitic steels after long-term annealing
  9. Investigation of tensile–compressive yield asymmetry and the role of deformation twin in extruded pure magnesium
  10. Neutron diffraction study on liquid Al–Ni alloys
  11. Investigation of the atomic structure of molten As–Se alloys using X-ray diffraction
  12. A theoretical approach to the elastic behaviour of compact and hollow spherical particles reinforced metal-matrix composites
  13. Applied
  14. Adsorption of nucleotides on the rutile (110) surface
  15. Effect of cyclic heat treatment on the microstructures and mechanical properties of Ti–Si alloys
  16. Deleterious phases resulting from the induction bending of thick-walled super-duplex pipework
  17. Steady state creep in a rotating composite disc of variable thickness
  18. Influence of data conversion methods from torsion tests on the Garofalo equation parameters for a high nitrogen steel
  19. High-alloy ferritic cast irons with different graphite microstructures for exhaust manifolds and turbocharger housings
  20. Microstructure and mechanical properties of friction stir butt welded dissimilar pure copper/brass alloy plates
  21. The heat capacity measurements of CoSb3-based Skutterudite compounds
  22. DGM News
  23. DGM News
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110337/html
Scroll to top button