Home Technology f-Element hydrides: structure and magnetism
Article
Licensed
Unlicensed Requires Authentication

f-Element hydrides: structure and magnetism

  • Ladislav Havela , Khrystyna Miliyanchuk and Alexandre Kolomiets
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Systematic magnetic and specific-heat studies of hydrides of ternary compounds on the basis of rare earths or actinides help to unravel different roles of f-states in these two classes of materials. In rare earths, H absorption tends to suppress magnetism by weakening the exchange interaction mediated by conduction electrons. Light actinides exhibit a 5f band of variable width at the Fermi level and the hydrogenation makes magnetic features typically stronger. 5f band narrowing due to volume expansion is responsible for this net tendency, but the effects of H bonding cannot be neglected.


* Correspondence address, Ladislav Havela, Charles University, Ke Karlovu 5, 12116 Praha 2, Czech Republic, Tel.: +42 02 2191 1351, Fax: +42 02 2191 1351, e-mail:

References

[1] M.H.Mendelsohn, D.M.Gruen, A.E.Dwight: Nature269 (1977) 45.10.1038/269045a0Search in Google Scholar

[2] B.Bogdanovic, M.Schwickardi: J. Alloys Compd. 253/254 (1997) 1.10.1016/S0925-8388(96)03049-6Search in Google Scholar

[3] Y.Nakamori, H.-W.Li, K.Kikuchi, M.Aoki, K.Miwa, S.Towata, S.Orimo: J. Alloys Compd.446–447 (2007) 296.10.1016/j.jallcom.2007.03.144Search in Google Scholar

[4] G.Alefeld, J.Völkl (Eds.): Hydrogen in Metals II, Springer, Berlin, 1978.10.1007/3-540-08883-0Search in Google Scholar

[5] A.J.Arko, J.J.Joyce, L.Havela, in: L. R.Morss, N. M.Edelstein, J.Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, Ed. 3, Vol. 4, Springer, Berlin2006, pp. 23072379.10.1007/1-4020-3598-5_21Search in Google Scholar

[6] J.N.Huiberts, R.Griessen, J.H.Rector, R.J.Wijngaarden, J.P.Dekker, D.G.de Groot, N.J.Koeman: Nature380 (1996) 231.10.1038/380231a0Search in Google Scholar

[7] A.V.Kolomiets, L.Havela, V.A.Yartys, A.V.Andreev: J. Alloys Compd.253–255 (1997) 343.10.1016/S0925-8388(97)02982-4Search in Google Scholar

[8] A.V.Kolomiets, L.Havela, V.Sechovský, A.V.Andreev, V.A.Yartys, I.R.Harris: Int. J. Hydrogen Energy24 (1999) 119.10.1016/S0360-3199(98)00067-6Search in Google Scholar

[9] H.N.Bordallo, H.Nakotte, J.Eckert, A.V.Kolomiets, L.Havela, A.V.Andreev, H.Drulis, W.Iwasieczko: J. App. Phys.83 (1998) 6986.10.1063/1.367693Search in Google Scholar

[10] L.Havela, K.Miliyanchuk, A.V.Kolomiets, L.C.J.Pereira, A.P.Gonçalves, E.Šantavá, K.Prokeš: J. Alloys Compd.446–447 (2007) 606.10.1016/j.jallcom.2006.12.076Search in Google Scholar

[11] H.N.Bordallo, H.Nakotte, A.V.Kolomiets, A.Christianson, L.Havela, A.J.Schulz, H.Drulis, W.Iwasieczko: Physica B276–278 (2000) 706.10.1016/S0921-4526(99)01810-4Search in Google Scholar

[12] E.Brück, H.Nakotte, F.R.de Boer, P.F.de Châtel, H. P.van der Meulen, J.J.M.Franse, A.A.Menovsky, N.H.Kim-Ngan, L.Havela, V.Sechovsky, J.A.A.J.Perenboom, N.C.Tuan, J.Sebek: Phys. Rev. B49 (1994) 8852.10.1103/PhysRevB.49.8852Search in Google Scholar

[13] K.Miliyanchuk, L.Havela, J.C.Waerenborgh, P.M.Gaczynski, O.Prokhnenko: Chem. Met. Alloys1 (2008) 174.Search in Google Scholar

[14] A.V.Kolomiets, L.Havela, A.V.Andreev, F.Wastin, J.Šebek, M.Maryško: Phys. Rev. B66 (2002) 144423.10.1103/PhysRevB.66.144423Search in Google Scholar

[15] L.Havela, V.Sechovský, P.Svoboda, M.Diviš, H.Nakotte, K.Prokeš, F.R.de Boer, A.Purwanto, R.A.Robinson, A.Seret, J.M.Winand, J.Rebizant, J.C.Spirlet, M.Richter, H.Eschrig: J. Appl. Phys.76 (1994) 6214.10.1063/1.358314Search in Google Scholar

[16] V.Sechovsky, L.Havela, in: K.H.J.Buschow (Ed.), Handbook of Magnetic Materials, Vol. 11, Elsevier, Amsterdam, 1998, pp. 1289.10.1016/S1567-2719(98)11005-3Search in Google Scholar

[17] J.S.Kim, J.Alwood, S.A.Getty, F.Sharifi, G.R.Stewart: Phys. Rev. B62 (2000) 6986.10.1103/PhysRevB.62.6986Search in Google Scholar

[18] L.Havela, K.Miliyanchuk, L.C.J.Pereira, E.Šantavá: Z. Naturforsch.62b (2007) 977.10.1515/znb-2007-0716Search in Google Scholar

[19] A.V.Kolomiets, L.Havela, A.V.Andreev, K.Miliyanchuk, S.Heathman, T.Goto: J. Magn. Magn. Mater.272–276 (2004) e343.10.1016/j.jmmm.2003.12.560Search in Google Scholar

Received: 2008-8-27
Accepted: 2009-2-24
Published Online: 2013-06-11
Published in Print: 2009-09-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. History
  4. Pierre Auger – Lise Meitner: Comparative contributions to the Auger effect
  5. Surface and grain-boundary segregation studied by quantitative AES and XPS
  6. High temperature mechanical spectroscopy of fine-grained ceramics
  7. The effect of electro-thermal fatigue on the structure of power electronic devices. Micro-structural evolution of the metallization layer
  8. f-Element hydrides: structure and magnetism
  9. Basic
  10. Hydrogen as a probe into 5f-magnetism
  11. Magnetism in PrPdSn and NdPdSn studied on single crystals
  12. Magnetic properties of fcc Ni-based transition metal alloys
  13. X-ray characterization of magnetic digital alloys
  14. Are RENiAl hydrides metallic?
  15. HoZn5Al3: rare-earth magnetism in a new structure type
  16. The influence of substitutions on the magnetocaloric effect in RCo2 compounds
  17. Thickness shear modes and magnetoelastic waves in a bi-layered structure: magnetic film–non-magnetic substrate
  18. Electrochemical properties of fine-grained AZ31 magnesium alloy
  19. Severe plastic deformation in Gum Metal with composition at the structural stability limit
  20. Applied
  21. Structural, magnetic, and transport properties of quantum well GaAs/δ-Mn/GaAs/InxGa1–xAs/GaAs heterostructures
  22. Effect of co-doping by Pb and La on structural and magnetic properties of Bi2212 superconducting ceramics
  23. Magnetic properties of the hydrogenated unconventional superconductor UCoGe–H
  24. Electrophoresis deposition of metal nanoparticles with reverse micelles onto InP
  25. Electronic structure and electric field gradient calculations for the Zr2Ni intermetallic compound
  26. Solution growth of the Gd–Cu–Al systems in the low-gadolinium concentration range
  27. Low-temperature specific heat of selected ceramics
  28. Novel behaviors in rare-earth-filled skutterudites studied by bulk-sensitive photoemission spectroscopy
  29. Charge transport in photosensitive nanocrystalline PbTe(In) films in an alternating electric field
  30. Enrichment and depletion of alloying elements in surface layers of iron base alloys annealed under different conditions
  31. Notifications
  32. Personal
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110166/pdf
Scroll to top button