High temperature magnetic strengthening in iron-based alloys: Magnetic effects on deformation and fracture, revisited
-
Tadao Watanabe
Abstract
The importance of magnetic effects upon mechanical properties of ferromagnetic materials, discussed by Zener almost a half century ago, has been revisited in order to stimulate researchers' interest in this research subject. It is shown that effects of magnetism and magnetic transformation can affect creep deformation, tensile deformation and ductility in α-Fe-based solid solution binary alloys in the ferromagnetic state. The magnetic alloy strengthening observed in the ferromagnetic state has been quantitatively described and discussed by using a new parameter related to magnetic properties of solute atoms such as Co, Cr and solvent Fe. The prospect of future application of the magnetic strengthening is given for high temperature materials with excellent strength, ductility and thermal stability.
References
[1] C.Zener: J. Metals7 (1955) 619, Trans. AIME. 203 (1955) 619.Suche in Google Scholar
[2] L.Kaufman, E.V.Clougherty, R.J.Weiss: Acta Metall.11 (1963) 323.Suche in Google Scholar
[3] T.Nishizawa, S.M.Hao, M.Hasebe, K.Ishida: Acta Metall.31 (1983) 1403.Suche in Google Scholar
[4] J.W.Cahn: Acta Metall.9 (1961) 795, 10 (1962) 179.10.1016/0001-6160(62)90114-1Suche in Google Scholar
[5] J.-C.Lin, Y.A.Chang: Met. Trans. A19 (1988) 441.Suche in Google Scholar
[6] I.Ohnuma, R.Kainuma, K.Ishida, in: P.E.A.Turchi, A.Gonis, R.D.Shull (Eds.), Calphad and Alloy Thermodynamicss, TMS, (2002) 61.Suche in Google Scholar
[7] H.Oikawa, G.W.Qin, T.Ikeshoji, R.Kainuma, K.Ishida: Acta Mater.50 (2002) 2223.Suche in Google Scholar
[8] W.Köster: Z. Metallkd.39 (1948) 1.10.1515/ijmr-1948-390101Suche in Google Scholar
[9] W.Köster: Arch. Eisenhüttenw.14 (1940) 271.10.1002/srin.194000911Suche in Google Scholar
[10] J.Lytton: J. Appl. Phys.35 (1964) 2397.10.1063/1.1702869Suche in Google Scholar
[11] V.F.Zackay, T.H.Hazlette: Acta Metall.1 (1953) 624.Suche in Google Scholar
[12] J.Echigoya: Phys. Stat. Sol. (a)17 (1973) 677.10.1002/pssa.2210170235Suche in Google Scholar
[13] P.R.Landon, J.L.Lytton, L.A.Shepard, J.E.Dorn: Trans. ASM.51 (1959) 900.Suche in Google Scholar
[14] H.Conrad, in: J.E.Dorn (Ed.), Mechanical Behavior of Materials at Elevated Temperatures, McGraw-Hill (1961) 149.Suche in Google Scholar
[15] F.Galofaro: Fundamentals of Creep and Creep-Rupture in Metals, Macmillan (1965).Suche in Google Scholar
[16] O.D.Sherby, J.Burke, in: Progress in Materials Science, Pergamon Press, 13 (1966) 325.Suche in Google Scholar
[17] J.E.Bird, A.K.Mukherjee, J.E.Dorn, in: D.G.Brandon, A.Rosen (Eds.), Quantitative Relation between Properties and Microstructure, Israel Univ. Press (1969) 255.Suche in Google Scholar
[18] Y.Ishida, C.Y.Cheng, J.E.Dorn: Trans. Met. Soc. AIME.236 (1966) 964.Suche in Google Scholar
[19] S.Karashima, H.Oikawa, T.Watanabe: Acta Metall.14 (1966) 791.Suche in Google Scholar
[20] J.Cadek, K.Milicka: Czech. J. Phys. B18 (1968) 1156.Suche in Google Scholar
[21] J.Cadek, M.Pahutova, K.Ciha, T.Hostinsky: Acta Metall.17 (1969) 803.Suche in Google Scholar
[22] J.-P.A.Immarigeon, J.J.Jonas: Acta Metall.22 (1974) 1235.Suche in Google Scholar
[23] Y.Imai, T.Murata: J. Japan Inst. Metals29 (1965) 1053.Suche in Google Scholar
[24] S.Karashima, H.Oikawa, T.Watanabe: Trans. Met. Soc. AIME.242 (1968) 1703.Suche in Google Scholar
[25] C.Y.Cheng, A.Karim, T.G.Langdon, J.E.Dorn: Trans. Met. Soc. AIME.242 (1968) 90.Suche in Google Scholar
[26] A.Karim: Can. J. Phys.46 (1968) 2425.10.1139/p68-601Suche in Google Scholar
[27] A.Fuchs, B.Ilschner: Acta Metall.17 (1969) 701.Suche in Google Scholar
[28] K.E.Amin, J.E.Dorn: Acta Metall.17 (1969) 1429.Suche in Google Scholar
[29] T.Watanabe, S.Karashima: Met.Trans.2 (1971) 1359.Suche in Google Scholar
[30] T.Watanabe, in: B. Wilshire, D. Owen (Eds.), Proc. 2nd Intern. Conf. on Creep and Fracture of Engineering Materials and Structures, Pineridge Press (1984) 51.Suche in Google Scholar
[31] H.Olkawa, K.Oguchi, S.Karashima: Scripta Metall.5 (1971) 825.Suche in Google Scholar
[32] K.Kawahara, S.Maekawa, S.Tsurekawa, T.Watanabe, in: S. Chonan, J. Tani, T. Watanabe, Y. Yamazaki (Eds.), Proc. Intern. Workshop on “Fundamental Study and Application of Intelligent Nano and Mesoscopic Structured Materials by Field Control”, Tohoku Univiversity, (2000) 129, S. Maekawa: Master Thesis, Tohoku University, Graduate School of Eng. (2001).Suche in Google Scholar
[33] B.Devincre, D.Rodney, P.Veyssiere, G.Kostorz (Eds.): Mater. Sci. Eng. A400 (2005), Spec. Issue on “Dislocations 2004: the Fundamentals of Plastic Deformation”.Suche in Google Scholar
[34] S.Takeuchi: J. Phys. Soc. Japan27 (1969) 929.10.1143/JPSJ.27.929Suche in Google Scholar
[35] R.L.Fleisher: Acta Metall.11 (1963) 203.10.1016/0001-6160(63)90213-XSuche in Google Scholar
[36] C.Kittel: Introduction to Solid State Physics, John Wiley, 7th Edition (1996) 443.Suche in Google Scholar
[37] D.Jiles: Introduction to the Electronic Properties of Materials, 2nd Edition, Nelson Thornes (2001) Chap. 10, Magnetic Properties of Materials, 202.Suche in Google Scholar
[38] W.Pepperhoff, M.Acet: Constitution and Magnetism of Iron and Its Alloys, Springer, Berlin (2001) 83.10.1007/978-3-662-04345-5_4Suche in Google Scholar
[39] C.-G.Lee, Y.Iijima, T.Hiratani, K.Hirano: Mater. Trans. JIM.31 (1990) 255.Suche in Google Scholar
[40] Y.Iijima, K.Kimura, C.-G.Lee, K.Hirano: Mater. Trans. JIM.34 (1993) 20.Suche in Google Scholar
[41] J.Kucera, K.Stransky: Mater. Sci. Eng.52 (1982) 1–38.10.1016/0025-5416(82)90067-2Suche in Google Scholar
[42] Y.Iijima: “Influence of magnetic transformation on diffusion in iron”, Diffusion Study in Japan, Research Signpost, India (2006) 1–29.Suche in Google Scholar
[43] N.S.Stoloff, R.G.Davies, R.C.Ku: Trans. Met. Soc. AIME.233 (1965) 1500.Suche in Google Scholar
[44] T.Watanabe: Res Mechanica11 (1984) 47–84.Suche in Google Scholar
[45] T.Watanabe: Mater. Sci. Eng. A166 (1993) 11.Suche in Google Scholar
[46] T.Watanabe, S.Tsurekawa: Acta Mater.47 (1999) 4171.Suche in Google Scholar
[47] T.Watanabe, S.Tsurekawa, X.Zhao, L.Zuo, C.Esling: J. Mater. Sci.41 (2006) 7747.Suche in Google Scholar
[48] J.Crangle, G.M.Goodman: Proc. Roy. Soc. Lond. A321 (1971) 477.Suche in Google Scholar
[49] H.Trauble, in: A.E.Berkowitz, E.Kneller (Eds.), Magnetism and Metallurgy, “The Influence of Crystal Defects on Magnetization Processes in Ferromagnetic Single Crystals”. Academic Press (1969) 621–687.Suche in Google Scholar
[50] G.Y.Chin: Adv. Mater. Res.l5 (1971) 217–280.Suche in Google Scholar
[51] T.Watanabe, T.Hirano, T.Ochiai, H.Oikawa: Mater. Sci. Forum157-162 (1994) 1103.Suche in Google Scholar
[52] J.Su, M.Denuma, T.Hirano: Phil. Mag. A82 (2002) 1541.Suche in Google Scholar
[53] T.Watanabe, S.Tsurekawa: Mater. Sci. Eng. A387 (2004) 447.Suche in Google Scholar
[54] M.Kumar, C.A.Schuh (Eds.): Scripta Mater.54 (2006) 961–1070, Viewpoint Set No. 40 on “Grain Boundary Engineering”.10.1016/j.scriptamat.2005.11.059Suche in Google Scholar
[55] T.Watanabe, S.Tsurekawa, X.Zhao, L.Zuo: Scripta Mater.54 (2006) 969.Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Prof. Dr. Günter Gottstein
- Feature
- Interface Migration in Metals (IMM):“Vingt Ans Après” (Twenty Years Later)
- Basic
- On the solute-defect interaction in the framework of a defactant concept
- A new model of dynamic recovery for Stage III of pure fcc metals without cross slip
- Sequence of distinct microyielding stages of the monocrystalline nickel-base superalloy CMSX-6 at high temperatures
- Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes
- Recrystallization initiated by low-temperature grain boundary motion coupled to stress
- Sub-grain boundary mobilities during recovery of binary Al–Mn alloys
- Concentration phase transition associated with grain boundary segregation in systems with restricted solubility
- Second-order faceting–roughening of the tilt grain boundary in zinc
- A model of grain boundary diffusion in polycrystals with evolving microstructure
- Linear measures for polyhedral networks
- Testing a curvature driven moving finite element grain growth model with the generalized three dimensional von Neumann relation
- Grain-boundary source/sink behavior for point defects: An atomistic simulation study
- Applied
- Deformation modes and anisotropy in magnesium alloy AZ31
- Control of recrystallisation texture and texture-related properties in industrial production of aluminium sheet
- The combined effect of static recrystallization and twinning on texture in magnesium alloys AM30 and AZ31
- Comparison of damage development depending on the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel
- Nanoindentation of Ti50Ni48Fe2 and Ti50Ni40Cu10 shape memory alloys
- Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation
- Superplastic failure mode in ultrafine grained magnesium alloy AZ31
- High temperature magnetic strengthening in iron-based alloys: Magnetic effects on deformation and fracture, revisited
- Notification
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Prof. Dr. Günter Gottstein
- Feature
- Interface Migration in Metals (IMM):“Vingt Ans Après” (Twenty Years Later)
- Basic
- On the solute-defect interaction in the framework of a defactant concept
- A new model of dynamic recovery for Stage III of pure fcc metals without cross slip
- Sequence of distinct microyielding stages of the monocrystalline nickel-base superalloy CMSX-6 at high temperatures
- Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes
- Recrystallization initiated by low-temperature grain boundary motion coupled to stress
- Sub-grain boundary mobilities during recovery of binary Al–Mn alloys
- Concentration phase transition associated with grain boundary segregation in systems with restricted solubility
- Second-order faceting–roughening of the tilt grain boundary in zinc
- A model of grain boundary diffusion in polycrystals with evolving microstructure
- Linear measures for polyhedral networks
- Testing a curvature driven moving finite element grain growth model with the generalized three dimensional von Neumann relation
- Grain-boundary source/sink behavior for point defects: An atomistic simulation study
- Applied
- Deformation modes and anisotropy in magnesium alloy AZ31
- Control of recrystallisation texture and texture-related properties in industrial production of aluminium sheet
- The combined effect of static recrystallization and twinning on texture in magnesium alloys AM30 and AZ31
- Comparison of damage development depending on the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel
- Nanoindentation of Ti50Ni48Fe2 and Ti50Ni40Cu10 shape memory alloys
- Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation
- Superplastic failure mode in ultrafine grained magnesium alloy AZ31
- High temperature magnetic strengthening in iron-based alloys: Magnetic effects on deformation and fracture, revisited
- Notification
- DGM News