Home Technology A numerical study of grain size effects on the strength and elongation of Al polycrystals using strain gradient plasticity theory
Article
Licensed
Unlicensed Requires Authentication

A numerical study of grain size effects on the strength and elongation of Al polycrystals using strain gradient plasticity theory

  • L. Zhou , S. X. Li and W. Ke
Published/Copyright: March 1, 2013

Abstract

By incorporating the constitutive equations based on classical plasticity and the mechanism-based strain gradient plasticity with finite element software, the stress–strain relationships and uniform elongations of Al polycrystals with different grain sizes were studied numerically. The calculation results indicate that grain refinement cannot substantially improve the uniform elongation but can increase the yield strength of Al polycrystals when the grain size is of the order of the micron and submicron scale. The Hall–Petch relationship for yield strength holds and the uniform elongation decreases with decreasing grain size. The calculation results in general agree well with the experiment data.


1 Correspondence address: Dr. Li Zhou, Department of Mechanical Engineering, Shenyang Ligong University, Shenyang, 110168, China, Tel.: +86 248 225 3722, Fax: +86 242 468 2115. E-mail:

References

[1] H.Jin, D.J.Lloyd: Scripta. Mater.50(2004)1319.10.1016/j.scriptamat.2004.02.021Search in Google Scholar

[2] N.A.Fleck, G.M.Muller, M.F.Ashby, J.W.Hutchinson: Acta Metal. Mater.42(1994)475.10.1016/0956-7151(94)90502-9Search in Google Scholar

[3] J.S.Stolken, A.G.Evans: Acta Mater.46(1998)5109.10.1016/S1359-6454(98)00153-0Search in Google Scholar

[4] D.J.Lloyd: Int. Mater. Rev.39(1994)1.10.1179/095066094790150982Search in Google Scholar

[5] C.Y.Yu, P.W.Kao, C.P.Chang: Acta Mater.53(2005)4019.10.1016/j.actamat.2005.05.005Search in Google Scholar

[6] Z.Xue, Y.Huang, M.Li: Acta Mater.50(2002)149.10.1016/S1359-6454(01)00325-1Search in Google Scholar

[7] H.Gao, Y.Huang, W.D.Nix, J.W.Hutchinson: J. Mech. Phys. Solids47(1999)1239.10.1016/S0022-5096(98)00103-3Search in Google Scholar

[8] Y.Huang, Z.Xue, H.Gao, Z.C.Xia: J. Mater. Res.15(2000)1786.10.1557/JMR.2000.0258Search in Google Scholar

[9] R.Saha, Z.Xue, Y.Huang, W.D.Nix: J. Mech. Phys. Solids49(2001)1997.10.1016/S0022-5096(01)00035-7Search in Google Scholar

[10] N.A.Fleck, J.W.Hutchinson: J. Mech. Phys. Solids41(1993)1825.10.1016/0022-5096(93)90072-NSearch in Google Scholar

[11] K.S.Cheong, E.P.Busso, A.Arsenlis: Int. J. Plasticity21(2005)1797.10.1016/j.ijplas.2004.11.001Search in Google Scholar

[12] H.Gao, Y.Huang: Int. J. Solid. Mater. Struct.38(2001)2615.10.1016/S0020-7683(00)00173-6Search in Google Scholar

[13] L.Zhou, S.X.Li, C.R.Chen, Y.C.Wang, Q.S.Zang, K.Lu: Mater. Sci. Eng. A352(2003)300.10.1016/S0921-5093(02)00901-2Search in Google Scholar

[14] L.Zhou, S.X.Li, Y.C.Wang, Q.S.Zang, K.Lu: Z. Metallkd.11(2003)1222.10.3139/146.031222Search in Google Scholar

[15] J.Y.Shu, C.Y.Barrlow: Int. J. Plasticity16(2000)563.10.1016/S0749-6419(99)00088-1Search in Google Scholar

[16] J.L.Bassani, A.Needleman: Int. J. Solid. Struct.38(2001)833.10.1016/S0020-7683(00)00059-7Search in Google Scholar

[17] C.W.Nan, D.R.Clarke: Acta Mater.44(1996)3801.10.1016/1359-6454(96)00008-0Search in Google Scholar

[18] G.Saada: Mater. Sci. Eng. A400–401(2005)146.10.1016/j.msea.2005.02.091Search in Google Scholar

[19] E.W.Hart: Acta Metall.15(1967)351.10.1016/0001-6160(67)90211-8Search in Google Scholar

[20] N.Tsuji, Y.Ito, Y.Saito, Y.Minamino: Scripta. Mater.47(2002)893.10.1016/S1359-6462(02)00282-8Search in Google Scholar

[21] S.X.Li, G.Y.Li, Y.Q.Weng: Z. Metallkd.95(2004)115.10.3139/146.017919Search in Google Scholar

Received: 2007-03-04
Accepted: 2007-11-19
Published Online: 2013-03-01
Published in Print: 2008-02-01

© 2008, Carl Hanser Verlag, Munich

Downloaded on 24.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101614/html?lang=en
Scroll to top button