Non-microscopical methods for characterization of microstructures and properties of UFG metals
-
Michael J. Zehetbauer
Abstract
The paper reports on non-microscopical methods which allow for close investigation of ultrafine-grained metals especially of those processed by different techniques of Severe Plastic Deformation. These are as follows: (i) X-ray Bragg profile analysis, (ii) electrical residual resistivity, (iii) annealing calorimetry, and (iv) positron annihilation spectroscopy. The advantage of these methods lies in their integration/averaging over a certain sample volume so that they are often much closer to macroscopic physical properties than methods of microscopy; furthermore, the values of quantities obtained are more reliable because of strictly objective rules of determination. Typical quantities being relevant for ultra-fine grained materials are (a) grain size and grain size distribution, (b) long range internal stresses, (c) dislocation densities, and (d) concentration of vacancies and/or vacancy agglomerates. While quantities (a) and (b) are important for all classes of ultra-fine grained materials, those of (c) and (d) particularly occur with nanomaterials processed by severe plastic deformation also being responsible for their specific features such as ductility and the presence of non-equilibrium phases.
References
[1] C.C.Koch: Nanostructured Materials – Processing, Properties and Potential Application, Noyes–William Andrew Publ., Norwich, N.Y., USA (2002).Search in Google Scholar
[2] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: JOM58–4 (2006) 33.Search in Google Scholar
[3] H.P.Karnthaler, T.Waitz, C.Rentenberger, B.Mingler: Mater. Sci. Eng. A387 (2004) 777.10.1016/j.msea.2004.01.125Search in Google Scholar
[4] T.Hebesberger, H.P.Stuewe, A.Vorhauer, F.Wetscher, R.Pippan: Acta Mater.53 (2005) 303.10.1016/j.actamat.2004.09.043Search in Google Scholar
[5] T.Unga´r, in: M. Zehetbauer, R.Z. Valiev (Eds.), Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals – Processing – Applications, Vienna, Dec. 2002, J. Wiley VCH Weinheim (2004) 395.10.1002/3527602461Search in Google Scholar
[6] E.Schafler, K.Simon, S.Bernstorff, P.Hana´k, G.Tichy, T.Unga´r, M.J.Zehetbauer: Acta Mater.53 (2005) 315.10.1016/j.actamat.2004.09.025Search in Google Scholar
[7] M.Zehetbauer, T.Unga´r, R.Kral, A.Borbely, E.Schafler, B.Ortner, H.Amenitsch, S.Bernstorff: Acta Mater.47 (1999) 1053.10.1016/S1359-6454(98)00366-8Search in Google Scholar
[8] B.E.Warren, B.L.Averbach: J. Appl. Phys.23 (1952) 497.10.1063/1.1702234Search in Google Scholar
[9] T.Unga´r, A.Borbély: Appl. Phys. Letters69 (1996) 3173.Search in Google Scholar
[10] T.Unga´r, G.Tichy: phys. stat. sol. (a)171 (1999) 425.Search in Google Scholar
[11] M.Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, Vol. II. Nat. Bur. Stand. Spec. Publ. No. 317, Washington DC. USA (1970) 1195.Search in Google Scholar
[12] M.A.Krivoglaz: X-ray and Neutron Diffraction in Nonideal Crystals, Springer-Verlag, Berlin Heidelberg New York (1996).10.1007/978-3-642-74291-0Search in Google Scholar
[13] T.Unga´r, I.Dragomir, A.Re´ve´sz, A.Borbe´ly: J. Appl. Cryst.32 (1999) 992.Search in Google Scholar
[14] I.Dragomir, T.Unga´r: J. Appl. Cryst.35 (2002) 556.10.1107/S0021889802009536Search in Google Scholar
[15] H.Wilhelm, A.Paris, E.Schafler, S.Bernstorff, J.Bonarski, T.Unga´r, M.J.Zehetbauer: Mater. Sci. Eng. A387 (2004) 1018.10.1016/j.msea.2004.03.099Search in Google Scholar
[16] M.Zehetbauer, H.P.Stuewe, A.Vorhauer, E.Schafler, J.Kohout: Adv. Eng. Mater.5 (2003) 330.10.1002/adem.200310090Search in Google Scholar
[17] M.J.Zehetbauer, J.Kohout, E.Schafler, F.Sachslehner, A.Dubravina: J. Alloys Comp.378 (2004) 329.10.1016/j.jallcom.2004.01.039Search in Google Scholar
[18] W.C.Hinds: Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles, Wiley, New York (1982).Search in Google Scholar
[19] T.Unga´r, A´.Re´ve´sz, A.Borbe´ly: J. Appl. Cryst.31 (1998) 554.Search in Google Scholar
[20] A.Dubravina, M.Zehetbauer, E.Schafler, I.Alexandrov: Mater. Sci. Eng. A387 (2004) 817.10.1016/j.msea.2004.03.093Search in Google Scholar
[21] H.Mughrabi: Acta Metall.31 (1983) 1367.10.1016/0001-6160(83)90007-XSearch in Google Scholar
[22] E.Schafler, A.Dubravina, B.Mingler, H.P.Karnthaler, M.Zehetbauer: Mater. Sci. Forum503–504 (2006) 51.Search in Google Scholar
[23] L.Balogh, G.Riba´rik, T.Unga´r: J. Appl. Phys.100 (2006) 023512.10.1063/1.2216195Search in Google Scholar
[24] B.E.Warren: Progr. Metal Phys.8 (1959) 147.10.1016/0502-8205(59)90015-2Search in Google Scholar
[25] T.Unga´r, L.Balogh, Y.T.Zhu, C.Xu, G.Riba´rik, Z.Horita, T.G.Langdon, in: Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe (Eds.), Proc. 2006 TMS Annual Meeting, San Antonio, 4th Int. Symp. Ultrafine Grained Materials, TMS publications, Warrendale (2006) 483.Search in Google Scholar
[26] T.Unga´r, M.Zehetbauer: Scripta Mater.35 (1996) 1497.Search in Google Scholar
[27] K.Huang: Proc. R. Soc. A190 (1947) 102.10.1098/rspa.1947.0064Search in Google Scholar
[28] H.G.Van Bueren: Acta Metall.3 (1955) 519.10.1016/0001-6160(55)90109-7Search in Google Scholar
[29] G.Saada, in: G.Thomas, J.Washburn (Eds.), Electron Microscopy and Strength of Crystals, New York, Interscience (1963).Search in Google Scholar
[30] T.Unga´r, E.Schafler, P.Hana´k, S.Bernstorff, M.Zehetbauer: Z. Metallkd.96 (2005) 578.Search in Google Scholar
[31] T.Unga´r, E.Schafler, P.Hana´k, S.Bernstorff, M.Zehetbauer: Mater. Sci. Eng. (2006) in press.10.1524/zksu.2006.suppl_23.129Search in Google Scholar
[32] M.Zehetbauer: Key Eng. Mater.97–98 (1994) 287.10.4028/www.scientific.net/KEM.97-98.287Search in Google Scholar
[33] E.Schafler, G.Steiner, E.Korznikova, M.Kerber, M.J.Zehetbauer: Mater. Sci. Eng. A410 (2005) 169.10.1016/j.msea.2005.08.070Search in Google Scholar
[34] E.Korznikova, E.Schafler, G.Steiner, M.Zehetbauer, in: Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe (Eds.), Proc. 2006 TMS Annual Meeting, San Antonio, 4th Int. Symp. Ultrafine Grained Materials, TMS publications, Warrendale (2006) 97.Search in Google Scholar
[35] M.J.Zehetbauer, G.Steiner, E.Schafler, A.Korznikov, E.Korznikova: Mater. Sci. Forum503–504 (2006) 57.Search in Google Scholar
[36] H.E.Kissinger: Annal. Chem.29 (1957) 1702.10.1021/ac60131a045Search in Google Scholar
[37] H.J.Wollenberger, in: R.W.Cahn, P.Haasen (Eds.), Physical Metallurgy, ch. 17, Elsevier, Amsterdam (1983) 1189.Search in Google Scholar
[38] B.R.Watts, in: F.R.N.Nabarro (Ed.), Dislocation in Solids, vol. 8, Elsevier, Amsterdam (1989) 175.Search in Google Scholar
[39] M.Zehetbauer: J. Phys.: Condens. Matter1 (1989) 2833.10.1088/0953-8984/1/17/005Search in Google Scholar
[40] M.Kocer, F.Sachslehner, M.Müller, E.Schafler, M.Zehetbauer: Mater. Sci. Forum210–213 (1996) 133.Search in Google Scholar
[41] R.Krause-Rehberg, H.S.Leipner: Positron Annihilation in Semiconductors, Springer, Berlin (1999).10.1007/978-3-662-03893-2Search in Google Scholar
[42] A.Seeger, F.Banhart: Helvetia Physica Acta63 (1990) 403.Search in Google Scholar
[43] J.Čižek, I.Prochazka, M.Cieslar, R.Kuzel, J.Kuriplach, F.Chmelik, I.Stulikova, F.Becvar, O.Melikhova, R.K.Islamgaliev: Phys. Rev. B65 (2002) 094106.Search in Google Scholar
[44] R.Wuerschum, S.Gruss, B.Gissibl, H.Natter, R.Hempelmann, H.E.Schaefer: Nanostr. Mater.9 (1997) 615.10.1016/S0965-9773(97)00138-4Search in Google Scholar
[45] R.Wuerschum, K.Reimann, S.Gruss, A.Kubler, P.Scharwaechter, W.Frank, O.Kruse, H.D.Carstanjen, H.E.Schaefer: Phil. Mag. B76 (1997) 407.10.1080/01418639708241104Search in Google Scholar
[46] J.Čižek, I.Prochazka, R.Kuzel, Z.Matej, V.Cherkaska, M.Cieslar, B.Smola, I.Stulikova, G.Brauer, W.Anwand, R.K.Islamgaliev, O.Kulyasova: Acta Phys. Pol. A107 (2005) 745.Search in Google Scholar
[47] T.E.M.Staab, R.Krause-Rehbaerg, B.Kieback: J. Mater. Sci.34 (1999) 3833.10.1023/A:1004666003732Search in Google Scholar
[48] W.Egger, G.Kögel, P.Sperr, W.Triftshäuser, J.Bär, S.Rödling, H.-J.Gudladt: Z. Metallkd.84 (2003) 687.Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Ultrafine-grained materials: a personal perspective
- Retained coarse grains in bulk nanocrystalline Ni3Al
- The effect of grain size on strain rate sensitivity and activation volume – from nano to ufg nickel
- Thermal stability of ECAP processed pure Cu and CuZr
- Grain refinement and texture formation in torsion deformed NiAl
- Shear deformation of submicron-structured materials
- Non-microscopical methods for characterization of microstructures and properties of UFG metals
- Applied
- Deformation processing of massive nanostructured materials
- Effect of Nb–V addition on the mechanical behaviour and structural stability of ultrafine grained steels
- New trends in superplasticity in SPD-processed nanostructured materials
- Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016
- The influence of post-ECAP annealing on the properties of ultrafine-grained 5005 aluminum alloy sheet
- Enhancement in mechanical behavior and wear resistance of severe plastically deformed two-phase Zn–Al alloys
- Mechanical behavior of nanostructured metals and alloys in the 300–4.2 K temperature interval
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Ultrafine-grained materials: a personal perspective
- Retained coarse grains in bulk nanocrystalline Ni3Al
- The effect of grain size on strain rate sensitivity and activation volume – from nano to ufg nickel
- Thermal stability of ECAP processed pure Cu and CuZr
- Grain refinement and texture formation in torsion deformed NiAl
- Shear deformation of submicron-structured materials
- Non-microscopical methods for characterization of microstructures and properties of UFG metals
- Applied
- Deformation processing of massive nanostructured materials
- Effect of Nb–V addition on the mechanical behaviour and structural stability of ultrafine grained steels
- New trends in superplasticity in SPD-processed nanostructured materials
- Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016
- The influence of post-ECAP annealing on the properties of ultrafine-grained 5005 aluminum alloy sheet
- Enhancement in mechanical behavior and wear resistance of severe plastically deformed two-phase Zn–Al alloys
- Mechanical behavior of nanostructured metals and alloys in the 300–4.2 K temperature interval
- Notifications
- DGM News