Compressive behaviour of ultrafine-grained AA6063T6 over a wide range of strains and strain rates
-
Lothar W. Meyer
Abstract
The flow stress behaviour of commercially available AA6063-AlMg0.5Si0.4 with ultrafine-grain size is investigated over a wide range of strain and strain rates under uniaxial compression. The ultrafine-grained microstructure is achieved by equal channel angular extrusion and characterised by grain sizes well below 1 μm. Results of quasi-static loading show that the ultrafine-grained states behave in an elastic – nearly perfect plastic manner with significantly reduced strain hardening capacity. When compared to the coarse grained counterpart, no change in strain rate sensitivity was measured for the material after two extrusions. In contrast to that, after eight extrusions the material shows significantly increased strain rate sensitivity especially in the range of highest rates above 102 s−1.
References
[1] V.M.Segal: Mater. Sci. Eng. A386 (2004) 269.10.3366/pah.2004.6.2.269Suche in Google Scholar
[2] R.Z.Valiev, T.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Suche in Google Scholar
[3] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: JOM58 (2006) 33.10.1007/s11837-006-0213-7Suche in Google Scholar
[4] R.Z.Valiev, in: M.J.Zehetbauer, R.Z.Valiev (Eds.), Nanomaterials by Severe Plastic Deformation, WILEY-VCH (2004) 109.10.1002/3527602461Suche in Google Scholar
[5] M.Furukawa, Z.Horita, T.G.Langdon: Adv. Eng. Mater.3 (2001) 121.10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-VSuche in Google Scholar
[6] Y.M.Wang, E.Ma: J. of Metastable and Nanocrystalline Materials17 (2003) 55.10.4028/www.scientific.net/JMNM.17.55Suche in Google Scholar
[7] D.R.Fang, Z.F.Zhang, S.D.Wu, C.X.Huang, H.Zhang, N.Q.Zhao, J.J.Li: Mater. Sci. Eng. A426 (2006) 305.10.1016/j.msea.2006.04.044Suche in Google Scholar
[8] Y.H.Zhao, X.Z.Liao, Z.Jin, R.Z.Valiev, Y.T.Zhu: Acta Mater.52 (2004) 4589.10.1016/j.actamat.2004.06.017Suche in Google Scholar
[9] J.Y.Chang, A.Shan: Mater. Sci. Eng. A347 (2003) 165.10.1016/S0921-5093(02)00577-4Suche in Google Scholar
[10] F.H.Dalla Torre, R.Lapovok, J.Sandlin, P.F.Thomson, C.H.J.Davies, E.V.Pereloma: Acta Mater.52 (2004) 4819.10.1016/j.actamat.2004.06.040Suche in Google Scholar
[11] U.F.Kocks, H.Mecking: Progr. Mater. Sci.48 (2003) 171.10.1016/S0079-6425(02)00003-8Suche in Google Scholar
[12] M.J.Zehetbauer, V.Seumer: Acta Metall. Mater.41 (1993) 577.10.1016/0956-7151(93)90088-ASuche in Google Scholar
[13] M.Hockauf, L.W.Meyer, T.Halle, C.Kuprin, M.Hietschold, S.Schulze, L.Krüger: Int. J. Mat. Res.97 (2006) 1392.Suche in Google Scholar
[14] F.H.Dalla Torre, E.V.Pereloma, C.H.J.Davies: Acta Mater.54 (2006) 1135.10.1016/j.actamat.2005.10.041Suche in Google Scholar
[15] Q.Wei, S.Cheng, K.T.Ramesh, E.Ma: Mater. Sci. Eng. A381 (2004) 71.10.1016/j.msea.2004.03.064Suche in Google Scholar
[16] G.T.GrayIII, T.C.Loewe, C.M.Cady, R.Z.Valiev, I.V.Alexandrov: Nanostruct. Mater.9 (1997) 477.10.1016/S0965-9773(97)00104-9Suche in Google Scholar
[17] F.H.Dalla Torre, H.van Swygenhoven, M.Victoria: Acta Mater.50 (2002) 3957.10.1016/S1359-6454(02)00198-2Suche in Google Scholar
[18] H.P.StüweP.Les: Acta Mater.46 (1998) 6375.10.1016/S1359-6454(98)00324-3Suche in Google Scholar
[19] B.Q.Han, J.Y.Huang, Y.T.Zhu, E.J.Lavernia: Acta Mater.54 (2006) 3015.10.1016/j.actamat.2006.02.045Suche in Google Scholar
[20] F.H.Dalla Torre, H.van Swygenhoven, M.Victoria: Acta Mater.50 (2002) 3957.10.1016/S1359-6454(02)00198-2Suche in Google Scholar
[21] Q.Wei, L.J.Kecskes, T.Jiao, K.T.Hartwig, K.T.Ramesh, E.Ma: Acta Mater.52 (2004) 1859.10.1016/j.actamat.2003.12.025Suche in Google Scholar
[22] D.Jia, K.T.Ramesh, E.Ma: Acta Mater.51 (2003) 3495.10.1016/S1359-6454(03)00169-1Suche in Google Scholar
[23] Q.Wei, T.Jiao, K.T.Ramesh, E.Ma, L.J.Kecskes, L.Magness, R.Dowding, V.U.Kazykhanov, R.Z.Valiev: Acta Mater.54 (2006) 77.Suche in Google Scholar
[24] R.E.Barber, T.Dudo, P.B.Yasskin, K.T.Hartwig: Scripta Mater.51 (2004) 373.10.1016/j.scriptamat.2004.05.022Suche in Google Scholar
[25] S.Nemat-Nasser, in: H.Kuhn, D.Medlin (Eds.), ASM Handbook Vol. 8ASM International (2000) 429.Suche in Google Scholar
[26] U.S.Lindholm, in: R.F.Bunshah (Ed.), Techniques of Metals Research, Interscience (1971) 199.Suche in Google Scholar
[27] E.D.H.Davies, S.C.Hunter: J. Mech. Phys. Solids11 (1963) 155.10.1016/0022-5096(63)90050-4Suche in Google Scholar
[28] N.Herzig, L.W.Meyer, T.Halle, in: G.C.Sih, P.M.S.T.de Castro (Eds.), Multiscale Behaviour of Materials and Structures: Analytical, Numerical and Experimental Simulation, Publindustria (2006) 25.Suche in Google Scholar
[29] M.Burgdorf: Doctoral Thesis Universität Stuttgart (1967).Suche in Google Scholar
[30] L.W.Meyer, N.Herzig, T.Halle, F.Hahn, L.Krueger, K.P.Staudhammer: J. of Mat. Proc. Technology182 (2007) 319.10.1016/j.jmatprotec.2006.07.040Suche in Google Scholar
[31] L.W.Meyer, L.Krüger, in: H. Kuhn, D. Medlin (Eds.), ASM Handbook Vol. 8 ASM International (2000) 452.Suche in Google Scholar
[32] L.W.Meyer, A.Schrödter, in: Second Australian Congress On Applied Mechanics (1999) 132.Suche in Google Scholar
[33] G.T.GrayIII, in: H. Kuhn, D. Medlin (Eds.), ASM Handbook Vol. 8 ASM International (2000) 462.Suche in Google Scholar
[34] H.S.Kim, S.I.Hong, M.H.Seo: J. Mater. Res.16 (2001) 856.10.1557/JMR.2001.0113Suche in Google Scholar
[35] R.K.Orugati, P.R.Subramanian, J.S.Marte, M.F.Gigliotti, S.Amancherla: Mater. Sci. Eng. A406 (2005) 102.10.1016/j.msea.2005.06.031Suche in Google Scholar
[36] V.M.Segal: Mater. Sci. Eng. A345 (2003) 36.10.1016/S0921-5093(02)00258-7Suche in Google Scholar
[37] B.Mingler, H.P.Karnthaler, M.J.Zehetbauer, R.Z.Valiev: Mater. Sci. Eng. A242 (2001) 319Suche in Google Scholar
[38] U.F.Kocks, H.Mecking: Progr. Mater. Sci.48 (2003) 171.10.1016/S0079-6425(02)00003-8Suche in Google Scholar
[39] A.T.Zehnder, E.Babinsky, T.Palmer: Exp. Mech.38 (1998) 295.10.1007/BF02410392Suche in Google Scholar
[40] M.B.Bever, D.L.Holt, A.L.Titchener: The stored energy of cold work, Pergamon Press Ltd. (1973)10.1016/0079-6425(73)90001-7Suche in Google Scholar
[41] E.A.Brandes, in: G.B.Brook (Ed.), Smithells Light Metals Handbook, Butterworth Heinemann, Oxford (1998) 23.Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Basic
- Texture and microstructure evolution of ECAP processed AlMg1Mn0.14 alloy
- Modelling grain refinement in fcc metals during equal-channel angular pressing by route “C”
- Fabrication of high strength nanostructured aluminium alloys by hydrostatic extrusion
- Comparison of the plastic strain distribution during equal-channel angular pressing (ECAP) using 2D and 3D FEM modeling
- Deformation twins in ultrafine grained commercial aluminum
- Compressive behaviour of ultrafine-grained AA6063T6 over a wide range of strains and strain rates
- Grain refinement response during twist extrusion of an Al-0.13% Mg alloy
- Preparation of NiO–LiFeO2 solid solutions: the role of mechanical and thermal treatments
- Applied
- Fatigue strength and fracture behavior of steels with and without interstitial carbon at room temperature in air
- The influence of Nd on the corrosion behavior of electroless-deposited Fe–P
- Time-dependent directional solidification of binary Al–Cu alloys in the initial transient
- Effect of V2O5 doping on the microstructure and local composition of textured Sr0.4Ba0.6Nb2O6 ceramics
- Microstructure and mechanical properties of AZ91D alloy prepared by a semi-solid diecasting process
- Development of SMD 32.768 kHz tuning fork type crystals
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Basic
- Texture and microstructure evolution of ECAP processed AlMg1Mn0.14 alloy
- Modelling grain refinement in fcc metals during equal-channel angular pressing by route “C”
- Fabrication of high strength nanostructured aluminium alloys by hydrostatic extrusion
- Comparison of the plastic strain distribution during equal-channel angular pressing (ECAP) using 2D and 3D FEM modeling
- Deformation twins in ultrafine grained commercial aluminum
- Compressive behaviour of ultrafine-grained AA6063T6 over a wide range of strains and strain rates
- Grain refinement response during twist extrusion of an Al-0.13% Mg alloy
- Preparation of NiO–LiFeO2 solid solutions: the role of mechanical and thermal treatments
- Applied
- Fatigue strength and fracture behavior of steels with and without interstitial carbon at room temperature in air
- The influence of Nd on the corrosion behavior of electroless-deposited Fe–P
- Time-dependent directional solidification of binary Al–Cu alloys in the initial transient
- Effect of V2O5 doping on the microstructure and local composition of textured Sr0.4Ba0.6Nb2O6 ceramics
- Microstructure and mechanical properties of AZ91D alloy prepared by a semi-solid diecasting process
- Development of SMD 32.768 kHz tuning fork type crystals
- Notifications
- DGM News