Fabrication of high strength nanostructured aluminium alloys by hydrostatic extrusion
- 
            
            
        Małgorzata Lewandowska
        
Abstract
In the present work, the possibility of obtaining high strength nanostructured aluminium alloys by hydrostatic extrusion has been shown. Billets of 2017 aluminium alloy were subjected to hydrostatic extrusion either immediately after water quenching or after subsequent ageing. The results have shown that processing by hydrostatic extrusion offers a possibility of grain refinement down to the nanometre scale in the age-hardenable aluminium alloy. However, the effectiveness of the process depends on its initial microstructure. The most promising results are obtained if the alloy is deformed in the as-quenched condition. The hydrostatically extruded aluminium alloy exhibits very high tensile strength with reasonable ductility. The stability of mechanical properties over a wide range of temperatures (from cryogenic to well above the ambient) is discussed. The results obtained are compared to similar 2XXX aluminium alloys processed by other severe plastic deformation methods.
References
[1] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar
[2] R.Z.Valiev: Mater. Sci. Eng. A234 (1997) 59.10.1016/S0921-5093(97)00183-4Search in Google Scholar
[3] M.Furukawa, Z.Horita, A.P.Zhilyaev, T.G.Langdon: Mater. Sci. Forum426–432 (2003) 2631.Search in Google Scholar
[4] M.Cavallini, M.Facchini, M.Massi, F.Biscarini: Synthetic Metals146 (2004) 283.10.1016/j.synthmet.2004.08.006Search in Google Scholar
[5] V.M.Segal: Mater. Sci. Eng. A197 (1995) 157.10.1016/0921-5093(95)09705-8Search in Google Scholar
[6] R.Z.Valiev, N.A.Krasilnikov, N.K.Tsenev: Mater. Sci. Eng. A137 (1991) 35.10.1016/0921-5093(91)90316-FSearch in Google Scholar
[7] A.P.Zhilyaev, G.V.Nurislamowa, B.K.Kim, M.D.Baro, J.A.Szpunar, T.G.Langdon: Acta mater.51 (2003) 753.10.1016/S1359-6454(02)00466-4Search in Google Scholar
[8] M.Richert, Q.Liu, N.Hansen: Mater. Sci. Eng. A260 (1999) 275.10.1016/S0921-5093(98)00988-5Search in Google Scholar
[9] Y.Saito, H.Utsunomiya, N.Tsuji, T.Sakai: Acta mater.47 (1999) 579.10.1016/S1359-6454(98)00365-6Search in Google Scholar
[10] M.Furukawa, A.Utsunomiya, K.Matsubara, Z.Horita, T.G.Langdon: Acta Mater.49 (2001) 3829.10.1016/S1359-6454(01)00262-2Search in Google Scholar
[11] D.G.Morris, M.A.Munoz-Morris: Acta Mater.50 (2002) 4047.10.1016/S1359-6454(02)00203-3Search in Google Scholar
[12] P.B.Prangnell, J.R.Bowen, P.J.Apps: Mater. Sci. Eng. A375 (2004) 178.10.1016/j.msea.2003.10.170Search in Google Scholar
[13] M.Sus-Ryszkowska, T.Wejrzanowski, Z.Pakiela, K.J.Kurzydlowski: Mater. Sci. Eng. A369 (2004) 151.10.1016/j.msea.2003.10.318Search in Google Scholar
[14] V.Stolyarov, T.Y.Zhu, I.V.Alexandrov, T.C.Lowe, R.Z.Valiev: Mat. Sci. Eng. A343 (2003) 43.10.1016/S0921-5093(02)00366-0Search in Google Scholar
[15] M.H.Shih, C.Y.Yu, P.W.Cao, C.P.Chang: Scripta mater.45 (2001) 793.10.1016/S1359-6462(01)01098-3Search in Google Scholar
[16] A.P.Zhilyaev, B.-K.Kim, J.A.Szpunar, M.D.Baro, T.G.Langdon: Mat. Sci. Eng. A391 (2005) 377.10.1016/j.msea.2004.09.030Search in Google Scholar
[17] W.J.Kim, C.S.Chung, D.S.Ma, S.I.Hong, H.K.Kim: Scripta mater.49 (2003) 333.10.1016/S1359-6462(03)00260-4Search in Google Scholar
[18] Y.T.Zhu, X.Liao: Nature mater.3 (2004) 351.10.1038/nmat1141Search in Google Scholar
[19] S.Komura, M.Furukawa, Z.Horita, M.Nemoto, T.G.Langdon: Mater. Sci. Eng. A297 (2001) 111.10.1016/S0921-5093(00)01255-7Search in Google Scholar
[20] T.Hanlon, Y.-N.Kwon, S.Suresh: Scripta mater.49 (2003) 675.10.1016/S1359-6462(03)00393-2Search in Google Scholar
[21] V.M.Skripnyuk, E.Rabkin, Y.Estrin, R.Lapovok: Acta mater.52 (2004) 405.10.1016/j.actamat.2003.09.025Search in Google Scholar
[22] A.Balyanov, J.Kutnyakova, N.A.Amirkhanova, V.V.Stolyarov, R.Z.Valiev, X.Z.Liao, Y.H.Zhao, Y.B.Jiang, H.F.Xu, T.C.Lowe, Y.T.Zhu: Scripta mater.51 (2004) 225.10.1016/j.scriptamat.2004.04.011Search in Google Scholar
[23] Z.Zhang, S.Hosoda, I.-S.Kim, Y.Watanabe: Mat. Sci. Eng. A425 (2006) 55.10.1016/j.msea.2006.03.018Search in Google Scholar
[24] R.Z.Valiev: Mater. Sci. Forum503–504 (2006) 3.10.4028/www.scientific.net/MSF.503-504.3Search in Google Scholar
[25] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Search in Google Scholar
[26] M.Lewandowska, H.Garbacz, W.Pachla, A.Mazur, K.J.Kurzydlowski: Sol. St. Phen.101–102 (2005) 65.Search in Google Scholar
[27] M.Lewandowska: Sol. St. Phen.114 (2006) 109.10.4028/www.scientific.net/SSP.114.109Search in Google Scholar
[28] H.Garbacz, M.Lewandowska, W.Pachla, K.J.Kurzydlowski: Journal of Microscopy223 (2006) 272.10.1111/j.1365-2818.2006.01646.xSearch in Google Scholar
[29] J.Budniak, M.Lewandowska, W.Pachla, M.Kulczyk, K.J.Kurzydlowski: Sol. St. Phen.114 (2006) 57.10.4028/www.scientific.net/SSP.114.57Search in Google Scholar
[30] A.Morawiec, J.J.Fundenberger, E.Bouzy, J.S.Lecomte: J. Appl. Cryst.35 (2002) 287.10.1107/S002188980200417XSearch in Google Scholar
[31] M.Murayama, Z.Horita, K.Hono: Acta Mater.49 (2001) 21.10.1016/S1359-6454(00)00308-6Search in Google Scholar
[32] Z.Horita, T.Fujinami, M.Nemoto, T.G.Langdon: J. Mater. Process. Tech.117 (2001) 288.10.1016/S0924-0136(01)00783-XSearch in Google Scholar
[33] P.J.Apps, J.R.Bowen, P. B.Prangnell: Acta Mater.51 (2003) 2811.10.1016/S1359-6454(03)00086-7Search in Google Scholar
[34] P.J.Apps, M.Berta, P.B.Prangnell: Acta Mater.53 (2003) 499.10.1016/j.actamat.2004.09.042Search in Google Scholar
[35] I.Gutierrez-Urrulia, M.A.Munoz-Morris, D.G.Morris: Mater. Sci. Eng. A394 (2005) 399.10.1016/j.msea.2004.11.025Search in Google Scholar
[36] M.V.Markushev, C.C.Bampton, M.Y.Murashkin, D.A.Hardwick: Mater. Sci. Eng. A234 (1997) 927.10.1016/S0921-5093(97)00333-XSearch in Google Scholar
[37] J.Mao, S.B.Kang, J.O.Park: J. Mater. Process. Tech.159 (2005) 314.10.1016/j.jmatprotec.2004.05.020Search in Google Scholar
[38] R.W.Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York (1989).Search in Google Scholar
[39] Y.M.Wang, E.Ma: Acta mater.52 (2004) 1699.10.1016/j.actamat.2003.12.022Search in Google Scholar
[40] D.Jia, Y.M.Wang, K.T.Ramesh, E.Ma, Y.T.Zhu, R.Z.Valiev: Appl. Phys. Lett.79 (2001) 611.10.1063/1.1384000Search in Google Scholar
[41] Y.T.Zhu, T.G.Langdon: Mater. Sci. Eng. A409 (2005) 234.10.1016/j.msea.2005.05.111Search in Google Scholar
[42] J.H.Driver: Scripta Mater.51 (2004) 819.10.1016/j.scriptamat.2004.05.014Search in Google Scholar
[43] M.Lewandowska, K.J.Kurzydlowski: Mater. Charact.55 (2005) 395.10.1016/j.matchar.2005.08.005Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- Texture and microstructure evolution of ECAP processed AlMg1Mn0.14 alloy
- Modelling grain refinement in fcc metals during equal-channel angular pressing by route “C”
- Fabrication of high strength nanostructured aluminium alloys by hydrostatic extrusion
- Comparison of the plastic strain distribution during equal-channel angular pressing (ECAP) using 2D and 3D FEM modeling
- Deformation twins in ultrafine grained commercial aluminum
- Compressive behaviour of ultrafine-grained AA6063T6 over a wide range of strains and strain rates
- Grain refinement response during twist extrusion of an Al-0.13% Mg alloy
- Preparation of NiO–LiFeO2 solid solutions: the role of mechanical and thermal treatments
- Applied
- Fatigue strength and fracture behavior of steels with and without interstitial carbon at room temperature in air
- The influence of Nd on the corrosion behavior of electroless-deposited Fe–P
- Time-dependent directional solidification of binary Al–Cu alloys in the initial transient
- Effect of V2O5 doping on the microstructure and local composition of textured Sr0.4Ba0.6Nb2O6 ceramics
- Microstructure and mechanical properties of AZ91D alloy prepared by a semi-solid diecasting process
- Development of SMD 32.768 kHz tuning fork type crystals
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Basic
- Texture and microstructure evolution of ECAP processed AlMg1Mn0.14 alloy
- Modelling grain refinement in fcc metals during equal-channel angular pressing by route “C”
- Fabrication of high strength nanostructured aluminium alloys by hydrostatic extrusion
- Comparison of the plastic strain distribution during equal-channel angular pressing (ECAP) using 2D and 3D FEM modeling
- Deformation twins in ultrafine grained commercial aluminum
- Compressive behaviour of ultrafine-grained AA6063T6 over a wide range of strains and strain rates
- Grain refinement response during twist extrusion of an Al-0.13% Mg alloy
- Preparation of NiO–LiFeO2 solid solutions: the role of mechanical and thermal treatments
- Applied
- Fatigue strength and fracture behavior of steels with and without interstitial carbon at room temperature in air
- The influence of Nd on the corrosion behavior of electroless-deposited Fe–P
- Time-dependent directional solidification of binary Al–Cu alloys in the initial transient
- Effect of V2O5 doping on the microstructure and local composition of textured Sr0.4Ba0.6Nb2O6 ceramics
- Microstructure and mechanical properties of AZ91D alloy prepared by a semi-solid diecasting process
- Development of SMD 32.768 kHz tuning fork type crystals
- Notifications
- DGM News