ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles
-
M. Hofer
, M. Buck und J. Starflinger
Abstract
The Fukushima accident reveals the need for additional safety systems for nuclear power plants. One promising option is the supercritical carbon-dioxide (sCO2) heat removal system, which consists of a simple Brayton cycle. This study provides an overview of the extensions and validation of the thermal-hydraulic system code ATHLET for the simulation of sCO2 power cycles, especially with regard to the sCO2 heat removal system. The properties of CO2, heat transfer and pressure drop correlations, as well as compact heat exchanger and turbomachinery modelling are considered.
Kurzfassung
Der Unfall von Fukushima offenbart den Bedarf an zusätzlichen Kühlsystemen für Kernkraftwerke. Eine vielversprechende Option ist ein Nachwärmeabfuhrsystem bestehend aus einem einfachen Joule-Kreisprozess mit superkritischem Kohlenstoffdioxid (sCO2) als Arbeitsmedium. Diese Studie gibt einen Überblick über die Erweiterungen und die Validierung des thermohydraulischen Systemcodes ATHLET für die Simulation von sCO2-Kreisprozessen, besonders im Hinblick auf das sCO2-Nachwärmeabfuhrsystem. Die Stoffdaten von CO2, Wärmeübergangs- und Druckverlustkorrelationen, sowie die Modellierung von Kompaktwärmeübertragern und Turbomaschinen werden berücksichtigt.
References
1 Venker, J.: Development and Validation of Models for Simulation of Supercritical Carbon Dioxide Brayton Cycles and Application to Self-Propelling Heat Removal Systems in Boiling Water Reactors. Stuttgart, 201510.18419/opus-2364Suche in Google Scholar
2 sCO2-HeRo, from http://www.sco2-hero.eu/, accessed 19-2-2019Suche in Google Scholar
3 Benra, F. K.; Brillert, D.; Frybort, O.; Hajer, P.; Rohde, M.; Schuster, S.; Seewald, M.; Starflinger, J.: A supercritical CO2 low temperature Brayton-cycle for residual heat removal. The 5th International sCO2 Power Cycles Symposium (2016) 1–510.1007/s13398-014-0173-7.2Suche in Google Scholar
4 Bestion, D.: System code models and capabilities. THICKET, Grenoble, 81–106, 2008Suche in Google Scholar
5 Mauger, G.; Tauveron, N.; Bentivoglio, F.; Ruby, A.: On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code. Energy168 (2019) 1002–101610.1016/j.energy.2018.11.063Suche in Google Scholar
6 Batet, L.; Alvarez-Fernandez, J. M.; Mas de les Valls, E.; Martinez-Quiroga, V.; Perez, M.; Reventos, F.; Sedano, L. A.: Modelling of a supercritical CO2 power cycle for nuclear fusion reactors using RELAP5–3D. Fusion Engineering and Design89 (2014) 354–35910.1016/J.FUSENGDES.2014.03.018Suche in Google Scholar
7 Hexemer, M. J.; Hoang, H. T.; Rahner, K. D.; Siebert, B. W.; Wahl, G. D.: Integrated Systems Test (IST) Brayton Loop Transient Model Description and Initial Results. S-CO2 Power Cycle Symposium, Troy, 1–172, 2009Suche in Google Scholar
8 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET User's Manual. (Vol. 1) Garching, 201610.1007/s00227-005-0161-8Suche in Google Scholar
9 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Models and Methods. (Vol. 4) Garching, 2016Suche in Google Scholar
10 Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH: ATHLET, 2019, from https://user-codes.grs.de/athlet, accessed 19-8-2019Suche in Google Scholar
11 Müller, C.: Entwicklung schneller Stoffwertpakete zur Beschleunigung des ATHLET-Codes. Garching, 1991Suche in Google Scholar
12 Span, R.; Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data25 (1996) 1509–159610.1063/1.555991Suche in Google Scholar
13 Dierckx, P.: Curve and Surface Fitting with Splines, Clarendon, Oxford [u.a.], 1993Suche in Google Scholar
14 Kunick, M.: Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the Spline-Based Table Look-Up Method (SBTL). Görlitz, 201710.51202/9783186618061Suche in Google Scholar
15 Lemmon, E. W.; Bell, I. H.; Huber, M. L.; McLinden, M. O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, National Institute of Standards and Technology, Gaithersburg, 2018, 10.18434/T4JS3CSuche in Google Scholar
16 Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.: The Transport Properties of Carbon Dioxide. Journal of Physical and Chemical Reference Data19 (1990) 763–80810.1063/1.555875Suche in Google Scholar
17 Fenghour, A.; Wakeham, W. A.; Vesovic, V.: The Viscosity of Carbon Dioxide. Journal of Physical and Chemical Reference Data27 (1998) 31–4410.1063/1.556013Suche in Google Scholar
18 Scalabrin, G.; Marchi, P.; Finezzo, F.; Span, R.: A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide with an Optimized Functional Form. Journal of Physical and Chemical Reference Data35 (2006) 1549–157510.1063/1.2213631Suche in Google Scholar
19 Hewitt, G. F.: Heat Exchanger Design Handbook, Begell House, New York, 1998Suche in Google Scholar
20 Dostal, V.; Driscoll, M. J.; Hejzlar, P.: A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Technical Report MIT-ANP-TR-100 (2004) 1–317Suche in Google Scholar
21 Walisch, T.: Messung des Wärmeüberganges von überkritischem CO2 im Kreisrohr bei erzwungener sowie bei Mischkonvektion (1997) 10.3929/ETHZ-A-001843633Suche in Google Scholar
22 Son, C.-H.; Park, S.-J.: An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube. International Journal of Refrigeration29 (2006) 539–54610.1016/j.ijrefrig.2005.10.010Suche in Google Scholar
23 Straetz, M. R.; Mertz, R.; Starflinger, J.: Experimental investigation on the heat transfer between condensing steam and sCO2 in a compact heat exchanger. 2nd European sCO2 Conference 2018 (2018) 10.17185/DUEPUBLICO/46078Suche in Google Scholar
24 Numrich, R.; Müller, J.: J1 Filmkondensation reiner Dämpfe. VDI-Wärmeatlas, Springer Berlin Heidelberg, Berlin, Heidelberg, 1011–1028, 201310.1007/978-3-642-19981-3_63Suche in Google Scholar
25 von Böckh, P.; Wetzel, T.: Wärmeübertragung: Grundlagen Und Praxis (7th ed.), Springer, Berlin, 201710.1007/978-3-662-55480-7Suche in Google Scholar
26 Hofer, M.; Buck, M.; Strätz, M.; Starflinger, J.: Investigation of a correlation based model for sCO2 compact heat exchangers. 3rd European sCO2 Conference, Paris, 1–9, 2019 10.17185/duepublico/48874Suche in Google Scholar
27 Grote, W.: Ein Beitrag zur modellbasierten Regelung von Entnahmedampfturbinen. Bochum, 2009Suche in Google Scholar
28 Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T.: Development of advanced off-design models for supercritical carbon dioxide power cycles, American Nuclear Society- ANS; La Grange Park (United States), 1 July 2012 10.1115/GT2013-95824Suche in Google Scholar
29 Hofer, M.; Starflinger, J.: Preliminary analysis of the design and operation conditions of a sCO2 heat removal system. Annual Meeting on Nuclear Technology, Berlin, 1–8, 2019Suche in Google Scholar
30 EUR: European Utility Requirements: Volume 2, 2001Suche in Google Scholar
31 Bohl, W.; Elmendorf, W.: Strömungsmaschinen. 1, Aufbau und Wirkungsweise, Vogel, 2013Suche in Google Scholar
32 Pham, H. S.; Alpy, N.; Ferrasse, J. H.; Boutin, O.; Tothill, M.; Quenaut, J.; Gastaldi, O.; Cadiou, T.; Saez, M.: An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow61 (2016) 379–39410.1016/j.ijheatfluidflow.2016.05.017Suche in Google Scholar
33 Hacks, A. J.; Vojacek, A.; Dohmen, H. J.; Brillert, D.: Experimental investigation of the sCO2-HeRo compressor. 2nd European sCO2 Conference 2018 (2018) 0–1010.17185/duepublico/46088Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- GRS Code System AC2
- Technical Contributions/Fachbeiträge
- Development of AC2 for the simulation of advanced reactor design of Generation 3/3+ and light water cooled SMRs
- Thermal-hydraulic insights during a main steam line break in a generic PWR KONVOI reactor with ATHLET 3.1A
- Heat transfer to water near the critical point: evaluation of the ATHLET thermal-hydraulic system code
- ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles
- Validation of the AC2 Codes ATHLET and ATHLET-CD
- Comparative analysis of simulations of LIVE-L10 and -L11 experiments using different lower head modules of AC2
- Validation and Application of the AC2 Code COCOSYS
- Validation of COCOSYS 2.4v4 AIM module on various single effect and integral experiments
- Simulation of LOCA-typical containment conditions with COCOSYS on the basis of THAI-test TH-29.3
- Analysis of the melt spreading and MCCI during the ex-vessel phase of a severe accident in WWER-1000
- Technical Notes/Technische Mitteilungen
- New developments in the thermal hydraulic module THY of the COCOSYS program, part of the AC2 software package: turbulence in gaseous countercurrent flows
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- GRS Code System AC2
- Technical Contributions/Fachbeiträge
- Development of AC2 for the simulation of advanced reactor design of Generation 3/3+ and light water cooled SMRs
- Thermal-hydraulic insights during a main steam line break in a generic PWR KONVOI reactor with ATHLET 3.1A
- Heat transfer to water near the critical point: evaluation of the ATHLET thermal-hydraulic system code
- ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles
- Validation of the AC2 Codes ATHLET and ATHLET-CD
- Comparative analysis of simulations of LIVE-L10 and -L11 experiments using different lower head modules of AC2
- Validation and Application of the AC2 Code COCOSYS
- Validation of COCOSYS 2.4v4 AIM module on various single effect and integral experiments
- Simulation of LOCA-typical containment conditions with COCOSYS on the basis of THAI-test TH-29.3
- Analysis of the melt spreading and MCCI during the ex-vessel phase of a severe accident in WWER-1000
- Technical Notes/Technische Mitteilungen
- New developments in the thermal hydraulic module THY of the COCOSYS program, part of the AC2 software package: turbulence in gaseous countercurrent flows