Home Technology Coupling simulation of neutron kinetics core model with CFD of IPWR steam line break accident
Article
Licensed
Unlicensed Requires Authentication

Coupling simulation of neutron kinetics core model with CFD of IPWR steam line break accident

  • L. Sun , M. Peng , G. Xia , J. Wang and R. Li
Published/Copyright: May 21, 2019
Become an author with De Gruyter Brill

Abstract

In this paper, development of coupled codes using two-group neutron diffusion kinetics code and computational fluid dynamics (CFD) solver Fluent has been introduced. Way of coupling, time step control algorithm and spatial mesh overlays have been summarized in detail which are basic components and challenges of the coupling methodologies. The implement and verification of coupled code have been modeled on integral pressurized water reactor (IPWR) IP200 with hexagonal fuel assembly in the core and once-through steam generators. The steam line break core transient was analyzed in coupled code simulation of a core boundary conditions derived from system code simulation results. The results presented transient three-dimensional distribution of the key operation parameters such as reactor power and coolant temperature, also demonstrated the inherent safety features of IP200. The current work will bring about the ability to explore multi-scale and multi-dimensional safety transient evaluations and give more precise neutronics/thermal-hydraulics mapping.

Kurzfassung

In diesem Beitrag wird die Entwicklung eines gekoppelten Codes unter Verwendung eines Zwei-Gruppen-Neutronendiffusionskinetik-Codes und des Computational Fluid Dynamics (CFD) Solver Fluent vorgestellt. Die grundlegenden Komponenten und Herausforderungen wie Koppelungsart, Zeitschrittsteuerungsalgorithmus und räumliche Netzüberlagerungen werden im Detail beschrieben. Zur Überprüfung der Implementierung und des gekoppelten Codes wurden Rechnungen zum integrierten Druckwasserreaktor (IPWR) IP200 mit hexagonalem Brennelement im Kern und Durchlaufdampferzeugern durchgeführt. Dazu wurde die Transiente eines Dampfleitungsbruchs mit dem gekoppelten Code berechnet. Dabei wurden die Kern-Randbedingungen aus den Ergebnissen einer Systemcoderechnung abgeleitet. Die Ergebnisse zeigen eine transiente dreidimensionale Verteilung der wichtigsten Betriebsparameter wie Reaktorleistung und Kühlmitteltemperatur und zeigen auch die inhärenten Sicherheitsmerkmale der IP200. Mit dieser aktuellen Arbeit wurde eine Grundlage für multiskalige und multidimensionale Sicherheits-Transientenberechnungen mit präziserer Bestimmung der Neutronen-/Thermohydraulik geschaffen.


E-mail: ,

References

1 Allison, C.; Berna, G.; Chambers, R.; Coryell, E.; Davis, K.; Hagrman, D.; Hagrman, D.; Hampton, N.; Hohorst, J.; Mason, R.: SCDAP/RELAP5/MOD3. 1 code manual, volume IV: MATPRO – a library of materials properties for light-water-reactor accident analysis, in: DT Hagrman, NUREG/CR-6150, EGG-2720, Vol. 4, 1993, pp. 4234Search in Google Scholar

2 McFadden, J.; Paulsen, M.; Gose, G.; Peterson, C.; McClure, J.; Westacott, P.: RETRAN-02: a program for transient thermal-hydraulic analysis of complex fluid flow systems. in: EPRI NP-1850 CCM, Vols, 1981, pp. 14Search in Google Scholar

3 Barre, F.; Bernard, M.: The CATHARE code strategy and assessment. Nuclear Engineering and Design124 (1990) 25728410.1016/0029-5493(90)90296-ASearch in Google Scholar

4 Stewart, C.; Wheeler, C.; Cena, R.; McMonagle, C.; Cuta, J.; Trent, D.: COBRA-IV: The model and the method. Pacific Northwest Labs., 197710.2172/5358588Search in Google Scholar

5 Marcum, W.R.: Thermal hydraulic analysis of the Oregon State TRIGA Reactor using RELAP5-3D. Nuclear Engineering & Radiation Health Physics Department, Oregon State University: Corvallis, Oregon (2008) 10.13182/NSE08-63Search in Google Scholar

6 Kelly, J.M.Stewart, C.W.Cuta, J.M.: VIPRE-02 – a two-fluid thermal-hydraulics code for reactor core and vessel analysis: mathematical modeling and solution methods. Nuclear Technology100 (1992) 24625910.13182/NT92-A34746Search in Google Scholar

7 Stewart, C.; Cuta, J.; Montgomery, S.; Kelly, J.; Basehore, K.; George, T.; Rowe, D.: VIPRE-01: a thermal-hydraulic code for reactor cores. Electric Power Research Inst., Palo Alto, CA (USA); Pacific Northwest Lab., Richland, WA (USA), 1989Search in Google Scholar

8 Rohde, U.; Höhne, T.; Kliem, S.; Hemström, B.; Scheuerer, M.; Toppila, T.; Aszodi, A.; Boros, I.; Farkas, I.; Mühlbauer, P.; Vyskocil, L.; Klepac, J.; Remis, J.; DuryT.: Fluid mixing and flow distribution in a primary circuit of a nuclear pressurized water reactor – Validation of CFD codes. Nuclear Engineering and Design237 (2007) 1639165510.1016/j.nucengdes.2007.03.015Search in Google Scholar

9 Höhne, T.; Krepper, E.; Rohde, U.: Application of CFD Codes in Nuclear Reactor Safety Analysis. Science and Technology of Nuclear Installations2010 (2010) 1810.1155/2010/198758Search in Google Scholar

10 Cardoni, J. N.: Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+. Master Thesis, University of Illinois at Urbana-Champaign (2011).Search in Google Scholar

11 Turinsky, P. J.; Al-Chalabi, R. M.; Engrand, P.; Sarsour, H. N.; Faure, F. X.; Guo, W.: NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems. in, EG and G Idaho, EGG-NRE-11406, 199410.2172/10191160Search in Google Scholar

12 Eklund, M.; Alamaniotis, M.; Hernandez, H.; Jevremovic, T.: Method of characteristics – A review with applications to science and nuclear engineering computation. Progress in Nuclear Energy85 (2015) 54856710.1016/j.pnucene.2015.05.002Search in Google Scholar

13 Weisman, J.; Tentner, A.: Application of the Method of Characteristics to Solution of Nuclear Engineering Problems. Nuclear Science and Engineering78 (1981) 12910.13182/NSE81-A19603Search in Google Scholar

14 Briesmeister, J. F.: MCNPTM-A general Monte Carlo N-particle transport code. Version 4C, LA-13709-M, Los Alamos National Laboratory, (2000) 2Search in Google Scholar

15 Jewer, S.; Buchan, A. G.; Pain, C. C.; Cacuci, D. G.: An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies. Annals of Nuclear Energy68 (2014) 12413510.1016/j.anucene.2013.12.018Search in Google Scholar

16 L. Vyskocil, L.; Macek, J.: Coupling CFD code with system code and neutron kinetic code. Nuclear Engineering and Design279 (2014) 21021810.1016/j.nucengdes.2014.02.011Search in Google Scholar

17 Chen, Z.; Chen, X.-N.; Rineiski, A.; Zhao, P.; Chen, H.: Coupling a CFD code with neutron kinetics and pin thermal models for nuclear reactor safety analyses. Annals of Nuclear Energy83 (2015) 414910.1016/j.anucene.2015.03.023Search in Google Scholar

18 Ge, J.; Zhang, D.; Tian, W.; Wang, K.; Qiu, S.; Su, G. H.: Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code. Progress in Nuclear Energy85 (2015) 36637410.1016/j.pnucene.2015.07.012Search in Google Scholar

19 Rohde, U.; Kliem, S.; Grundmann, U.; Baier, S.; Bilodid, Y.; Duerigen, S.; Fridman, E.; Gommlich, A.; Grahn, A.; Holt, L.; Kozmenkov, Y.; Mittag, S.: The reactor dynamics code DYN3D-models, validation and applications. Progress in Nuclear Energy89 (2016) 17019010.1016/j.pnucene.2016.02.013Search in Google Scholar

20 Grahn, A.; Kliem, S.; Rohde, U.: Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX. Annals of Nuclear Energy84 (2015) 19720310.1016/j.anucene.2014.12.015Search in Google Scholar

21 Grahn, A.; Gommlich, A.; Kliem, S.; Bilodid, Y.; Kozmenkov, Y.: Simulation of an MSLB scenario using the 3D neutron kinetic core model DYN3D coupled with the CFD software Trio_U. Nuclear Engineering and Design315 (2017) 11712710.1016/j.nucengdes.2017.02.002Search in Google Scholar

22 Vasconcelos, V.; Santos, A.; Campolina, D.; Theler, G.; Pereira, C.: Coupled unstructured fine-mesh neutronics and thermal-hydraulics methodology using open software: A proof-of-concept. Annals of Nuclear Energy115 (2018) 17318510.1016/j.anucene.2018.01.021Search in Google Scholar

23 Khan, S. U. D.; Peng, M.: Neutronics and thermal hydraulic coupling analysis of integrated pressurized water reactor. International Journal of Energy Research37 (2013) 1709171710.1002/er.2981Search in Google Scholar

24 Xia, G. L.; Peng, M. J.; Du, X.: Analysis of load-following characteristics for an integrated pressurized water reactor. International Journal of Energy Research38 (2014) 38039010.1002/er.3053Search in Google Scholar

25 Sun, L.; Peng, M.; Xia, G.; Lv, X.; Li, R.: Numerical Study on Coolant Flow Distribution at the Core Inlet for an Integral Pressurized Water Reactor. Nuclear Engineering and Technology49 (2017) 718110.1016/j.net.2016.07.005Search in Google Scholar

26 Sakurai, F.; Horiguchi, Y.; Kobayashi, S.; Takayanagi, M.: Present status and future prospect of JRR-3 and JRR-4. Physica B: Condensed Matter311 (2002) 71310.1016/S0921-4526(01)01048-1Search in Google Scholar

27 Ilas, D.; Holcomb, D. E.; Varma, V. K.: Advanced High-Temperature Reactor Neutronic Core Design. Advances in Reactor Physics – Linking Research, Industry, and Education (2012)Search in Google Scholar

28 Chao, Y. A.Shatilla, Y. A.: Conformal Mapping and Hexagonal Nodal Methods-II: Implementation in the ANC-H Code, Nuclear Science and Engineering121 (1995) 21022510.13182/NSE95-A28559Search in Google Scholar

29 Böer, R.; FinnemannH.: Fast analytical flux reconstruction method for nodal space-time nuclear reactor analysis. Annals of Nuclear Energy19 (1992) 61762810.1016/0306-4549(92)90006-WSearch in Google Scholar

30 Chao, Y. A.: Comments on the Treatment of Transverse Leakage in Advanced Nodal Codes for Hexagonal Nodes. Nuclear Science and Engineering109 (1991) 42342410.13182/NSE91-A23868Search in Google Scholar

31 Stacey, W. M.: Nuclear Reactor Physics. JOHN WILEY & SONS. INC, United States of America, 2001Search in Google Scholar

32 Dong, X.; Zhang, Z.; Tian, Z.; Li, L.; Chen, G.: A High Effective Parallel Method for the Coupling Between Neutronics and Thermal-Hydraulic. (2016) V004T010A013 10.1115/ICONE24-60310Search in Google Scholar

33 Nield, D. A.; Bejan, A.: Convection in porous media, Springer, 2006Search in Google Scholar

34 Yan, Y.: Coupled CFD-system-code simulation of a gas cooled reactor. in: Int. Conf. Math. Comput. Methods Appl. Nucl. Sci. Eng., 2011Search in Google Scholar

35 Ansys: Fluent 15.0 User's Manual. (2013)Search in Google Scholar

36 Sadatomi, M.; Sato, Y.; Saruwatari, S.: Two-phase flow in vertical noncircular channels. International Journal of Multiphase Flow8 (1982) 64165510.1016/0301-9322(82)90068-4Search in Google Scholar

37 Dittus, F.; Boelter, L.: Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer12 (1985) 32210.1016/0735-1933(85)90003-XSearch in Google Scholar

38 Gnielinski, V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng.16 (1976) 359368Search in Google Scholar

39 Gnielinski, V.: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forschung im Ingenieurwesen A41 (1975) 81610.1007/BF02559682Search in Google Scholar

40 Ivanov, K.; Avramova, M.: Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis. Annals of Nuclear Energy34 (2007) 50151310.1016/j.anucene.2007.02.016Search in Google Scholar

41 Xia, G.; Wang, B.; Du, X.: Neutronic/thermal-hydraulic coupling analysis of natural circulation IPWR under ocean conditions. Annals of Nuclear Energy114 (2018) 9210110.1016/j.anucene.2017.10.043Search in Google Scholar

42 Ivanov, K. N.; Beam, T. M.; Baratta, A. J.; Irani, A.; Trikouros, N.: Pressurised water reactor main steam line break (MSLB) benchmark Volume I: Final specifications. Volume I: Final Specifications: OECD NEA/NSC/DOC (99) 8 (1999)Search in Google Scholar

43 Beam, T.; Ivanov, K.; Taylor, B.; Baretta, A.: Pressurised Water Reactor Main Steam Line Break (MSLB) Benchmark Volume II: Summary results of Phase I (Point Kinetics). Volume II: Summary results of Phase I (Point Kinetics): OECD NEA/NSC/DOC 21 (2000)Search in Google Scholar

44 Todorova, N.; Ivanov, K.; Taylor, B.: Pressurized Water Reactor Main Steam Line Break (MSLB) Benchmark. Volume IV: Results of Phase III on Coupled Core-Plant Transient Modeling. Volume IV: Results of Phase III on Coupled Core-Plant Transient Modeling, (2003)Search in Google Scholar

Received: 2018-11-27
Published Online: 2019-05-21
Published in Print: 2019-06-17

© 2019, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110979/pdf
Scroll to top button