Home Technology The core shroud leakage analysis and study for Kuosheng nuclear power plant
Article
Licensed
Unlicensed Requires Authentication

The core shroud leakage analysis and study for Kuosheng nuclear power plant

  • H.-T. Lin , J.-R. Wang , H.-C. Chen , J.-H. Yang , S.-W. Chen and C. Shih
Published/Copyright: May 21, 2019
Become an author with De Gruyter Brill

Abstract

Kuosheng Nuclear Power Plant (NPP) is a BWR/6 plant in Taiwan. First, this study focuses on the establishment of the TRACE/SNAP model for Kuosheng. To check the system response of the Kuosheng TRACE/SNAP model, the Final Safety Analysis Report (FSAR) and startup tests data are used to assess the TRACE/SNAP model. The TRACE predictions are consistent with the FSAR and startup tests data. This indicates that there is a respectable accuracy in the TRACE/SNAP model of Kuosheng NPP. Second, this study also focuses on the application of the TRACE/SNAP model in the core shroud leakage. The Kuosheng NPP TRACE/SNAP model is used to perform the analysis of core shroud leakage. The TRACE results imply that Kuosheng NPP is in a safe situation when the core shroud leakage transient occurs.

Kurzfassung

Das Kernkraftwerk Kuosheng (KKW) ist eine SWR/6-Anlage in Taiwan. Dieser Beitrag beschreibt die Erstellung eines TRACE/SNAP-Modells für Kuosheng. Zur Verifikation des Modells werden die Anfangs- und Randbedingungen des Final Safety Analysis Report (FSAR) und der Inbetriebnahmeprüfungen verwendet. Dabei zeigen die TRACE-Ergebnisse eine gute Übereinstimmung mit den Daten der FSAR- und Anlauftests. Dies deutet darauf hin, dass das TRACE/SNAP-Modell des KKW Kuosheng eine gute Genauigkeit aufweist. Im Anschluss daran wird ein Leck im Kern, d.h. in der Brennstoffhülle, abgebildet und berechnet mit dem TRACE/SNAP-Modell. Die so erzielten TRACE-Ergebnisse zeigen, dass sich bei diesen Transienten mit Lecks in der Brennstoffhülle das Kernkraftwerk Kuosheng immer in einem sicheren Anlagenzustand befindet.


E-mail:

References

1 U.S. NRC: TRACE V5.840 user's manual, 2014Search in Google Scholar

2 U.S. NRC: TRACE V5.0 assessment manual, 2010Search in Google Scholar

3 Applied Programming Technology, Inc.: Symbolic nuclear analysis package (SNAP) user's manual. 2012Search in Google Scholar

4 Montero-Mayorga, J.; Queral, C.; Gonzalez-CadeloJ.: AP1000 SBLOCA simulations with TRACE code. Annals of Nuclear Energy75 (2015) 8710010.1016/j.anucene.2014.07.045Search in Google Scholar

5 Gajev, I.; Ma, W.; KozlowskiT.: Sensitivity Analysis of Input Uncertain Parameters on BWR Stability Using TRACE/PARCS. Annals of Nuclear Energy67 (2014) 495810.1016/j.anucene.2013.10.016Search in Google Scholar

6 Queral, C.; Montero-Mayorga, J.; Gonzalez-Cadelo, J.; Jimenez, G.: AP1000 Large-Break LOCA BEPU analysis with TRACE code. Annals of Nuclear Energy85 (2015) 57658910.1016/j.anucene.2015.06.011Search in Google Scholar

7 Jimenez, G.; Queral, C.; Rebollo-Mena, M. J.; Martinez-Murillo, J. C.; Lopez-Alonso, E.: Analysis of the Operator Action and the Single Failure Criteria in A SGTR Sequence Using Best Estimate Assumptions with TRACE 5.0. Annals of Nuclear Energy58 (2013) 16117710.1016/j.anucene.2013.02.023Search in Google Scholar

8 Zhang, Y.; Mikityuk, K.: Static and transient analysis of a medium-sized sodium cooled fast reactor loaded with oxide, nitride, carbide and metallic fuels. Annals of Nuclear Energy87 (2015) 76177110.1016/j.anucene.2015.03.025Search in Google Scholar

9 Montero-Mayorga, J.; Queral, C.; Gonzalez-Cadelo, J.: Effects of Delayed RCP Trip during SBLOCA in PWR. Annals of Nuclear Energy63 (2014) 10712510.1016/j.anucene.2013.06.030Search in Google Scholar

10 Hursin, M.; Bogetic, S.; Dohkane, A.; Canepa, S.; Zerkak, O.; Ferroukhi, H.; Pautz, A.: Development and validation of a TRACE/PARCS core model of Leibstadt Kernkraftwerk cycle 19. Annals of Nuclear Energy101 (2017) 55957510.1016/j.anucene.2016.11.001Search in Google Scholar

11 Gonzalez-Cadelo, J.; Queral, C.; Montero-Mayorga, J.: Analysis of Cold Leg LOCA with Failed HPSI by Means of Integrated Safety Assessment Methodology. Annals of Nuclear Energy69 (2014) 14416710.1016/j.anucene.2014.02.001Search in Google Scholar

12 Dokhane, A.; Judd, J.; Gajev, I.; Zerkak, O.; Ferroukhi, H.; Kozlowski, T.: Analysis of Oskarshamn-2 stability event using TRACE/SIMULATE-3 K and comparison to TRACE/PARCS and SIMULATE-3 K stand-alone. Annals of Nuclear Energy102 (2017) 19019910.1016/j.anucene.2016.12.015Search in Google Scholar

13 Lin, K. Y.: Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection Startup Test. ASME 2012 V&V, 2012Search in Google Scholar

14 Taiwan Power Company: Final Safety Analysis Report for Kousheng Nuclear Power Station Units 1&2 (FSAR). 2001Search in Google Scholar

15 Yuann, R. Y.; Lin, H. T.: Guideline of Generating Parameters for Reload Licensing Analyses for Kuosheng Units 1 and 2, INER report. INER-6529R, 2009Search in Google Scholar

16 Wang, J. R. et al.: Kuosheng Startup Tests Transient Analyses. INER report, INER-0965, 1989Search in Google Scholar

Received: 2018-10-09
Published Online: 2019-05-21
Published in Print: 2019-06-17

© 2019, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110986/html
Scroll to top button