Home Technology Numerical prediction of single-phase flow mixing characteristics in a 1/12th of the cross segment of a 54-rod bundle
Article
Licensed
Unlicensed Requires Authentication

Numerical prediction of single-phase flow mixing characteristics in a 1/12th of the cross segment of a 54-rod bundle

  • S. K. Verma
Published/Copyright: May 21, 2019
Become an author with De Gruyter Brill

Abstract

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. A Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-∊ turbulence model that is widely used in industry. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. In present investigation using the species transport model, includes the study of diffusion of two fluids (water and KNO3) to study its interaction and how mixing is enhanced. The species model is concerned with the transport of species with in this phase, where it is experimentally found that our species are completely miscible. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Kurzfassung

Numerische Simulationen ausgewählter Unterkanal Experimente mit Tracern (Kaliumnitrat) wurden durchgeführt, um den Stand der Technik der Computational Fluid Dynamics (CFD)-Codes zu untersuchen. Ein Reynolds-Spannungsmodell (RSM) wurde als primäres Turbulenzmodell für den Simulationsfall ausgewählt, da es als ziemlich genau für die Vorhersage von Strömungen in Stabbündeln gilt. Zum Vergleich wird der Fall auch mit einem in der Industrie weit verbreiteten Standard-Turbulenzmodell k-∊ simuliert. Die Strömung tritt durch den Masseneinstrom an den drei Unterkanalflächen in den Berechnungsbereich ein. Die Simulationsergebnisse wurden an verschiedenen Stellen der Mischzone und der nachgelagerten Zone extrahiert. Die lokale Massenfraktion zeigt eine gleichmäßige Vermischung. In der vorliegenden Untersuchung mit Hilfe des Transportmodells verschiedener Arten wird die Diffusion von zwei Flüssigkeiten (Wasser und KNO3) berücksichtigt, um die Interaktionen zu untersuchen und um herauszufinden, wie die Mischung verbessert werden kann. Das Modell der verschiedenen Arten beschäftigt sich mit dem Transport von Arten in einer Phase, wenn experimentell festgestellt wurde, dass diese Arten vollständig mischbar sind. Die Effektivität des angewandten Turbulenzmodells ist kurz vor der Austrittsebene nahezu vernachlässigbar, da die Verteilungen nahezu identisch aussehen und die Strömung voll entwickelt ist. Andererseits ändern sich die dimensionslosen Mischskalaverteilungen quantitativ deutlich, was in der unterschiedlichen Skala der Farbbalken sichtbar ist.


E-mail:

References

1 Sharma, M. P.; Nayak, A. K.: Determination of Turbulent Mixing Rate for Single-Phase Flow in Simulated Subchannels of a Natural Circulation Pressure Tube–Type BWR. Nuclear Science and Engineering, 180 (2015) 17210.13182/NSE14-102Search in Google Scholar

2 Yan, B. H.; Gu, H. Y.; Yu, L.: Numerical simulation of the coherent structure and turbulent mixing in tight lattice. Progress in Nuclear Energy54 (2012) 819510.1016/j.pnucene.2011.07.008Search in Google Scholar

3 Ylönena, A.; Bissels, W.-M.; Prasser, H.-M.: Single-phase cross-mixing measurements in a 4 × 4 rod bundle. Nuclear Engineering and Design241 (2011) 2484249310.1016/j.nucengdes.2011.04.014Search in Google Scholar

4 Sadatomi, M.; Kawahara, A.; Sato, Y.: Prediction of the single-phase turbulent mixing rate between two parallel subchannels using a subchannel geometry factor. Nuclear Engineering and Design162 (1996) 24525610.1016/0029-5493(95)01129-3Search in Google Scholar

5 Verma, S. K.; Sinha, S. L.; Chandraker, D. K.: Experimental investigation of effect of spacer on two phase turbulent mixing rate in subchannels of pressure tube type BWR. Kerntechnik82 (2017) 535544, 10.3139/124.110836Search in Google Scholar

6 Verma, S. K.; Sinha, S. L.; Chandraker, D. K.: Experimental Investigation on the Effect of Spacer on the Turbulent Mixing in Vertical Pressure Tube – Type Boiling Water Reactor. Nuclear Science and Engineering190 (2017) 195208, 10.1080/00295639.2017.1413874Search in Google Scholar

7 Verma, S. K.; Sinha, S. L.; Chandraker, D. K.: Experimental Investigation of Effect of Spacer on Single Phase Turbulent Mixing Rate on Simulated Subchannel of Advanced Heavy Water Reactor. Annals of Nuclear Energy110 (2017) 18610.1016/j.anucene.2017.06.020Search in Google Scholar

8 Rowe, D.; Angle, C.: Cross flow mixing between parallel flow channels during boiling. Part II. Measurement of flow and enthalpy in two parallel channels wash. pacific North West lab, Battelle-northwest, Richland, 196710.2172/4504525Search in Google Scholar

9 Shen, D.; Liu, X.; Cheng, X.: A new turbulent mixing modeling approach for sub-channel analysis code, Annals of Nuclear Energy121 (2018) 19420210.1016/j.anucene.2018.07.023Search in Google Scholar

10 Podila, K.; Rao, Y. F.: CFD simulation of heated tight-lattice rod bundles for an IAEA benchmark. Progress in Nuclear Energy108 (2018) 22223210.1016/j.pnucene.2018.06.001Search in Google Scholar

Received: 2018-10-10
Published Online: 2019-05-21
Published in Print: 2019-06-17

© 2019, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110977/pdf
Scroll to top button