Startseite Analysis of operating characteristics of IPWR under natural circulation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of operating characteristics of IPWR under natural circulation

  • H. Zhu , S. Zhang , G. Xia und M. Peng
Veröffentlicht/Copyright: 1. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Many integrated pressurized water reactor (IPWR) designs using natural circulation operation mainly to enhance their inherent safety. The operating characteristics of primary coolant are completely different without mechanical pumps. The designs and safety analysis of forced circulation reactors are widely researched, but the natural circulation characteristics of IPWR have not been well studied by literatures. The present work discussed the thermal-hydraulic characteristics of IPWR under natural circulation conditions by using the best estimate codes RELAP5. And the effect of system parameters on natural circulation characteristics of IPWR is also studied. The results show that, the primary coolant average temperature and steam pressure are two key parameters that affect the natural circulation stable operating load. The set value of primary coolant average temperature effects the core outlet temperature and the steam temperature, but the primary coolant flow is basically the same under different primary coolant average temperature but same load conditions. The smaller steam pressure is more conducive to produce superheated steam, but there is risk of two phase flow instability in OTSG secondary side. The rapid load change process under natural circulation indicating that the reactor has a good load tracking characteristics under natural circulation, but the rapid change of primary coolant temperature will cause oscillations in system parameters.

Kurzfassung

Viele integrale Druckwasserreaktoren (IPWR) nutzen Naturumlaufbetrieb, um ihre Sicherheit zu erhöhen. Das Betriebsverhalten des Primärkühlmittels ohne Pumpen ist ein völlig anderes als das mit Pumpen. Während der Einfluss von Zwangsumlauf in Reaktoren weitgehend in der Literatur beschrieben sind, findet sich zum Naturumlauf in IPWR erst wenig Literatur. In der vorliegenden Arbeit wurden die thermohydraulischen Eigenschaften von IPWR unter Naturumlaufbedingungen unter Verwendung der Best Estimate Codes RELAP5 diskutiert. Dabei wird auch der Einfluss von Systemparametern auf den Naturumlauf in IPWR untersucht. Die Ergebnisse zeigen, dass die durchschnittliche Temperatur des Primärkühlmittels und der Dampfdruck zwei Schlüsselparameter sind, die den stabilen Betrieb im Naturumlauf beeinflussen. Der eingestellte Wert der Primärkühlmitteltemperatur beeinflusst die Kernausgangstemperatur und die Dampftemperatur, aber der Primärkühlmittelstrom ist bei unterschiedlicher Primärkühlmitteltemperatur und gleichen Lastbedingungen im Wesentlichen gleich. Der kleinere Dampfdruck ist günstiger für die Erzeugung von überhitztem Dampf, aber es besteht die Gefahr einer zweiphasigen Strömungsinstabilität auf der Sekundärseite der Dampferzeuger. Der schnelle Lastwechselprozess im Naturumlauf zeigt, dass der Reaktor im Naturumlauf ein gutes Lastverfolgungsverhalten aufweist, aber die schnelle Änderung der Primärkühlmitteltemperatur zu Schwankungen der Systemparameter führt.


* E-mail:

References

1 Schulz, T. L.: Westinghouse AP1000 advanced passive plant. Nucl. Eng. Des.236 (2006) 1547155710.1016/j.nucengdes.2006.03.049Suche in Google Scholar

2 Iwamura, T.; Murao, Y.; Araya, F.; Okumura, K.: A concept and safety characteristics of JAERI passive safety reactor (JPSR). Prog. Nucl. Energy29 (1995) 39740410.1016/0149-1970(95)00068-USuche in Google Scholar

3 Juhn, P. E.; Kupitz, J.; Cleveland, J.; Cho, B.; Lyon, R. B.: IAEA activities on passive safety systems and overview of international development. Nucl. Eng. Des.201 (2000) 415910.1016/S0029-5493(00)00260-0Suche in Google Scholar

4 Zhang, Y. P.; Qiu, S. Z.; Su, G. H.; Tian, W. X.: Design and transient analyses of emergency passive residual heat removal system of CPR1000. Part I: Air cooling condition. Prog. Nucl. Energy53 (2011) 47147910.1016/j.pnucene.2011.03.001Suche in Google Scholar

5 Zhang, Y. P.; Qiu, S. Z.; Su, G. H.; Tian, W. X.: Design and transient analyses of emergency passive residual heat removal system of CPR1000. Nucl. Eng. Des.242 (2012) 24725610.1016/j.nucengdes.2011.09.036Suche in Google Scholar

6 IAEA: Integral design concepts of advanced water cooled reactors. In: IAEA TECDOC-977, 1995Suche in Google Scholar

7 Ramana, M. V.; Hopkins, L. B.; Glaser, A.: Licensing small modular reactors. Energy61 (2013) 55556410.1016/j.energy.2013.09.010Suche in Google Scholar

8 Hidayatullah, H.; Susyadi, S.; Hadid, S. M.: Design and technology development for small modular reactors-Safety expectations, prospects and impediments of their deployment. Prog. Nucl. Energy79 (2015) 12713510.1016/j.pnucene.2014.11.010Suche in Google Scholar

9 Misale, M.: Experimental study on the influence of power steps on the thermohydraulic behavior of a natural circulation loop. Int. J. Heat Mass Transfer99 (2016) 78279110.1016/j.ijheatmasstransfer.2016.04.036Suche in Google Scholar

10 Fukami, M. V. I.; Santecchia, A.: CAREM project: innovative small PWR. Prog. Nucl. Energy37 (2000) 26527010.1016/S0149-1970(00)00057-3Suche in Google Scholar

11 Bae, K. H.; Kim, H. C.; Chang, M. H.; Sim, S. K.: Safety evaluation of the inherent and passive safety features of the SMART design. Ann. Nucl. Energy28 (2001) 33334910.1016/S0306-4549(00)00057-8Suche in Google Scholar

12 Carelli, M. D.; Conway, L. E.; Oriani, L.; et al.: The design and safety features of the IRIS reactor. Nucl. Eng. Des.230 (2004) 15116710.1016/j.nucengdes.2003.11.022Suche in Google Scholar

13 Xia, G. L.; Peng, M. J.; Du, X.: Calculation analysis on the natural circulation of a passive residual heat removal system for IPWR. Ann. Nucl. Energy72 (2014) 18919710.1016/j.anucene.2014.02.018Suche in Google Scholar

14 Marcel, C. P.; Acuna; F. M.; Zanocco, P. G.; Delmastro, D. F.: Stability of selfpressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: the stability performance of the CAREM-25reactor. Nucl. Eng. Des.265 (2013) 23224310.1016/j.nucengdes.2013.08.057Suche in Google Scholar

15 Ingersoll, D. T.; Houghton, Z. J.; Bromm, R.; Desportes, C.: NuScale small modular reactor for Co-generation of electricity and water. Desalination340 (2014) 849310.1016/j.desal.2014.02.023Suche in Google Scholar

16 Chen, H. L.; Chen, Z.; Chen, C.; et al.: Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100.Int. J. Hydrogen Energy41 (2016) 7158716810.1016/j.ijhydene.2016.01.101Suche in Google Scholar

17 Chung, Y. J.; Yang, S. H.; Kim, H. C.; Zee, S. Q.: Thermal hydraulic calculation in a passive residual heat removal system of the SMART-P plant for forced and natural convection conditions. Nucl. Eng. Des.232 (2004) 27728810.1016/j.nucengdes.2004.07.002Suche in Google Scholar

18 Park, H. S.; Choi, K. Y.; Cho, S.; Yi, S. J.; Park, C. K.; Chung, M. K.: Experimental study on the natural circulation of a passive residual heat removal system for an integral reactor following a safety related event. Ann. Nucl. Energy35 (2008) 2249225810.1016/j.anucene.2008.09.006Suche in Google Scholar

19 Wu, Y. W.; Su, G. H.; Qiu, S. Z.; Tian, W. X.: Development of a thermal-hydraulic analysis software for a passive residual heat removal system. Ann. Nucl. Energy48 (2012) 253910.1016/j.anucene.2012.05.012Suche in Google Scholar

20 Xia, G. L.; Su, G. H.; Peng, M. J.: Analysis of natural circulation operational characteristics for integrated pressurized water reactor. Ann. Nucl. Energy92 (2016) 30431110.1016/j.anucene.2016.01.032Suche in Google Scholar

21 Zhao, P. C.; Li, S. Z.; Chen, Z.; Zheng, J.; Chen, H. L.: Natural circulation characteristics analysis of a small modular natural circulation lead–bismuth eutectic cooled fast reactor. Prog. Nucl. Energy83 (2015) 22022810.1016/j.pnucene.2015.03.013Suche in Google Scholar

22 Tiselj, I.; Cerne, G.: Some Comments on the behaviour of RELAP5 numerical scheme at very small time step. Nucl. Sci. Eng.134 (2000) 310.13182/NSE134-306Suche in Google Scholar

23 Trivedi, A. K.; Allison, C.; Khanna, A.; Munshi, P.: RELAP5/SCDAPSIM model development for AP1000 and verification for large break LOCA. Nucl. Eng. Des.305 (2016) 22222910.1016/j.nucengdes.2016.05.018Suche in Google Scholar

24 Trivedi, A. K.; Allison, C.; Khanna, A.; Munshi, P.: AP1000 station blackout study with and without depressurization using RELAP5/SCDAPSIM. Nucl. Eng. Des.307 (2016) 29930810.1016/j.nucengdes.2016.07.019Suche in Google Scholar

25 Watanabe, T.; Ishigaki, M.; Hirano, M.: Analysis of BWR long-term station blackout accident using TRAC-BF1. Annals of Nuclear Energy49 (2012) 22322610.1016/j.anucene.2012.05.028Suche in Google Scholar

26 Emonot, P.; Souyri, A.; Gandrille, J. L.; Barre, F.: CATHARE-3: A new system code for thermal-hydraulics in the context of the NEPTUNE project. Nucl. Eng. Des.241 (2011) 4476448110.1016/j.nucengdes.2011.04.049Suche in Google Scholar

27 Alku, T.: Modelling of turbulent effects in LOCA conditions with CATHARE-3. Nucl. Eng. Des.321 (2017) 25826510.1016/j.nucengdes.2016.10.050Suche in Google Scholar

28 Xu, W. Q.; Peng, M. J.; Liu, J. G.: Research on ideal steady state programming control strategy of integrated PWR. Chin. J. Nucl. Sci. Eng. (2010) 18Suche in Google Scholar

29 INEL: RELAP5/MOD3 Code Manual. NUREG/CR-5535, USNRC, 1998Suche in Google Scholar

30 Liu, J. G.; Peng, M. J.; Zhang, Z. J.: Load Following Dynamic Characteristic Analysis of Casing Once-Through Steam Generator. Atomic Energy Sci. Technology44 (2010) 175182Suche in Google Scholar

Received: 2018-08-08
Published Online: 2018-10-01
Published in Print: 2018-10-15

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110942/html
Button zum nach oben scrollen