Review on using nanofluids for heat transfer enhancement in nuclear power plants
-
D. Sharma
and K. M. Pandey
Abstract
Cooling down fuel rods is the critical technical challenge in nuclear reactors. In the past decades conventional fluids (like water, ethylene glycol, oil) were used for this purpose. Conventional heat transfer fluids extract less heat due to their lower thermal conductivity. Currently improving the heat transfer using advanced fluids – known as nanofluids – is investigated. A fluid which contains particles with sizes in nano-meters (known as nanoparticles) is called nanofluid. Solid metals have larger thermal conductivity when it is nano in size. The nanofluids which exhibit nanoparticles are usually made of oxides, metals, carbon nanotubes or carbides. Nanofluid is the new challenge in thermal sciences which generate from the concept of suspension of nanoparticles in base fluids for improving cooling phenomenon in nuclear reactors. Nanofluids have unique features or properties which are totally different from conventional solid-liquid mixtures that make them potentially useful for heat transfer enhancement in nuclear reactors. The research work on improvement in heat transfer using nanofluids is still in its primary stage. This paper presents a current review survey in this area with emphasis on the enhancement of heat transfer studies of nanofluids.
Kurzfassung
Die Abkühlung von Brennstäben ist die entscheidende technische Herausforderung in Kernreaktoren. In den vergangenen Jahrzehnten wurden dazu herkömmliche Flüssigkeiten wie Wasser, Ethylenglykol oder Öl verwendet. Herkömmliche Wärmeübertragungsflüssigkeiten entziehen aufgrund ihrer geringeren Wärmeleitfähigkeit weniger Wärme. Derzeit wird die Verbesserung des Wärmeübergangs mit modernen Flüssigkeiten – so genannten Nanofluiden – untersucht. Eine Flüssigkeit, die Partikel mit Größen in Nanometern (sogenannte Nanopartikel) enthält, wird als Nanofluid bezeichnet. Feste Metalle haben eine größere Wärmeleitfähigkeit, wenn sie nanogroß sind. Die Nanofluide, die Nanopartikel aufweisen, bestehen in der Regel aus Oxiden, Metallen, Kohlenstoff-Nanoröhrchen oder Auto-Bides. Nanofluid ist die neue Herausforderung in den Thermowissenschaften, die aus dem Konzept der Suspension von Nanopartikeln in Basisflüssigkeiten zur Verbesserung des Kühlungsphänomens in Kernreaktoren entsteht. Nanofluide haben einzigartige Eigenschaften oder Eigenschaften, die sich von herkömmlichen Fest-Flüssig-Gemischen völlig unterscheiden, was sie potenziell für die Verbesserung der Wärmeübertragung in Kernreaktoren nützlich macht. Die Forschungsarbeiten zur Verbesserung der Wärmeübertragung durch Nanofluide befinden sich noch im Anfangsstadium. Dieses Papier stellt eine aktuelle Übersichtsstudie in diesem Bereich mit Schwerpunkt auf der Verbesserung der Wärmeübertragung von Nanofluiden vor.
References
1 Choi, S. U. S.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Developments and Applications of Non-Newtonian Flows, American Society of Mechanical Engineers, New York, pp. 99–105, 199510.1073/pnas.92.1.305Search in Google Scholar
2 Keblinski1, P.; Jeffrey, A.; Eastman, J. A.; David, G. C.: Nanofluids for thermal transport. Mater. Today.8 (2005) 36–4410.1016/S1369-7021(05)70936-6Search in Google Scholar
3 Arani, A.; Amani, A. A.: Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid. Exp. Therm. Fluid Sci.44 (2013) 520–53310.1016/j.expthermflusci.2012.08.014Search in Google Scholar
4 Wang, X. Q.; Mujumdar, A. S.: Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci.46 (2007) 1–1910.1016/j.ijthermalsci.2006.06.010Search in Google Scholar
5 Wang, X.; Choi, S. U. S.; Xu, X.: Thermal conductivity of nanoparticle fluid mixture. J. of Thermophys. Heat Transf.13 (1999) 474–48010.2514/2.6486Search in Google Scholar
6 Maxwell, J. C.: A treatise on electricity and magnetism. Vol. 1Clarendon, Oxford, 1881Search in Google Scholar
7 Bruggeman, D. A. G.: The prediction of the thermal conductivity of heterogeneous mixtures. Ann. Phys.24 (1935) 636–66410.1002/andp.19354160705Search in Google Scholar
8 Hamilton, R. L.; Crosser, O. K.: Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundamen.1 (1962) 187–19110.1021/i160003a005Search in Google Scholar
9 Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated maxwell model. J. of Nanopart. Res.5 (2003) 167–17110.1023/A:1024438603801Search in Google Scholar
10 Schwartz, L. M.; Garboczi, E. J.; Bentz, D. P.: Interfacial transport in porous media: Application to dc electrical conductivity of mortars. J Appl. Phys.78 (1995) 5898–590810.1063/1.360591Search in Google Scholar
11 Xue, Q.Z.: Model for effective thermal conductivity of nanofluids. Phys. Lett.307 (2003) 313–31710.1016/S0375-9601(02)01728-0Search in Google Scholar
12 Kim, T.; Zhao, C.; Lu, T.: Thermal transport in high porosity cellular metal foams. J. Thermophys. Heat Transf.18 (2004) 309–31710.2514/1.11780Search in Google Scholar
13 Xue, Q.; Xu, W. M.: A model of thermal conductivity of nanofluids with interfacial shells. Mat. Chemis. & Phys.90 (2005) 298–3110.1016/j.matchemphys.2004.05.029Search in Google Scholar
14 Kumar, D. H.; Patel, H. E.; Kumar, V. R. R.; Sundararajan, T.; Pradeep, T.; Das, S. K.: Model for heat conduction in nanofluids. Physical Rev. Lett.93 (2004) 144 15524799 10.1103/PhysRevLett.93.144301Search in Google Scholar
15 Putnam, S. A.; Cahill, D. G.; Braun, P. V.; Ge, Z.; Shimmin, R. G.: Thermal conductivity of nanoparticle suspensions. J. of App. Phys.99 (2006) 30810.1063/1.2189933Search in Google Scholar
16 Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conv. And Mgmt.52 (2011) 789–79310.1016/j.enconman.2010.06.072Search in Google Scholar
17 Choi, S.U.S.: Nanofluid technology: Current status and future research. Korea-U.S. Technical Conf. on Strategic Technologies, Vienna, pp. 22–24, 1998Search in Google Scholar
18 Murshed, S. M. S.; Leong, K. C.; Yang, C.: Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. of Therm. Sci.44 (2005) 367–7310.1016/j.ijthermalsci.2004.12.005Search in Google Scholar
19 Xuan, Y.; Le, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow21 (2000) 58–6410.1016/S0142-727X(99)00067-3Search in Google Scholar
20 Eastman, J. A.; Choi, S. U. S.; Li, S.; Soyez, G.; Thompson, L. J.; DiMelfi, R. J.: Novel Thermal properties of nanostructured materials. Int. Symp. Metastable Mechanically Alloyed & Nanocrystalline Materials, pp. 7–12, 1998Search in Google Scholar
21 Liu, M.; Lin, M. C.; Tsai, C. Y.; Wang, C. C.: Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int. J. Heat & Mass Trans.49 (2006) 3028–03310.1016/j.ijheatmasstransfer.2006.02.012Search in Google Scholar
22 Sanders, P. G.; Eastman, J. A.; Weertman, J. R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia45 (1997) 4019–402510.1016/S1359-6454(97)00092-XSearch in Google Scholar
23 Lee, S.; Choi, S. U. S.; Li, S.; Eastman, J. A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. Transactions of the ASME. J. of Heat Transf.121 (1999) 280–28910.1115/1.2825978Search in Google Scholar
24 Choi, S.U.S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A.: Anomalous thermal conductivity enhancement in nanotube suspensions. App. Phys. Lett.79 (2001) 2252–225410.1063/1.1408272Search in Google Scholar
25 Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters78 (2001) 718–72010.1063/1.1341218Search in Google Scholar
26 Xie, H.W.; Xi, J. T.; Liu, Y.; Ai, F.; Wu, Q.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. of App. Phys.91 (2002) 4568–457210.1063/1.1454184Search in Google Scholar
27 Xie, H.; Wang, J.; Xi, T.; Liu, Y.: Study on the thermal conductivity of SiC nanofluids. Journal of the Chinese Ceramic Society29 (2001) 361–364Search in Google Scholar
28 Patel, H. E.; Das, S. K.; Sundararajan, T.; Nair, A. S.; George, B.; Pradeep, T.: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. App. Phys. Lett.83 (2003) 2931–293310.1063/1.1602578Search in Google Scholar
29 Xie, H.; Lee, H.; Youn, W.; Choi, M.: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. of App. Phys.94 (2003) 4967–497110.1063/1.1613374Search in Google Scholar
30 Choi, E. S.; Brooks, J. S.; Eaton, D. L.; Al-Haik, M. S.; Hussaini, M. Y.; Garmestani, H.; Li, D.; Dahmen, K.: Enhancement of thermal and electric properties of carbon nanotube polymer composites by magnetic field processing. J. App. Phys.94 (2003) 6034–603910.1063/1.1616638Search in Google Scholar
31 Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. Transactions of the ASME. J. of Heat Transf.125 (2003) 567–57410.1115/1.1571080Search in Google Scholar
32 Hong, T. K.; Yang, H. S.; Choi, C. J.: Study of the enhanced thermal conductivity of Fe nanofluids. J. of App. Phys.97 (2005) 64311–64110.1063/1.1861145Search in Google Scholar
33 Murshed, S. M. S.; Leong, K. C.; Yang, C.: Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences44 (2005) 367–37310.1016/j.ijthermalsci.2004.12.005Search in Google Scholar
34 Liu, M. S.; Lin, M. C.; Huang, I. T.; Wang, C. C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. comm. in heat and mass transf.32 (2005) 1202–121010.1016/j.icheatmasstransfer.2005.05.005Search in Google Scholar
35 Li, C. H.; Peterson, G. P.: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions nanofluids. J. of Applied Phys.99 (2006) 08431410.1063/1.2191571Search in Google Scholar
36 Einstein, A.: A New Determination of Molecular Dimensions. Annalen der Physik4 (2906) 37–62Search in Google Scholar
37 Batchelor, G.: The Effect of Brownian Motion on the Bulk Stress in the Suspension of Spherical Particles. J. of Fluid Mechanics83 (2977) 97–11710.1017/S0022112077001062Search in Google Scholar
38 Corcione, M.: Empirical Correlating Equations for Predicting the Effective thermal Conductivity and Dynamic Viscosity of Nanofluids. Energy. Conv. and Mgmt.52 (2011) 789–79310.1016/j.enconman.2010.06.072Search in Google Scholar
39 Li, Q.; Xuan, Y.: Convective heat transfer and flow characteristics of Cu–water nanofluid. Science in China SeriesE 45, 408–416, 2002Search in Google Scholar
40 Das, S. K.; Putra, N.; Roetzel, W.: Pool Boiling Characteristics of Nano-Fluids. Int. J. of Heat and Mass Transf.46 (2003) 851–86210.1016/S0017-9310(02)00348-4Search in Google Scholar
41 Krieger, I.; Dougherty, T. A.: Mechanism for Non Newtonian Flow in Suspensions of Rigid Spheres. Transactions of the Society of Rheology3 (1959) 137–15210.1122/1.548848Search in Google Scholar
42 Niesen, L. E.: Generalized equation for the elastic moduli of composite materials. J. Appl. Phy.41 (1970) 4626–462710.1063/1.1658506Search in Google Scholar
43 Mooney, M.: The Viscosity of a concentrated suspension of spherical particles. J. Collides Sci.6 (1951) 162–17010.1016/0095-8522(51)90036-0Search in Google Scholar
44 Lundgren, T. S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mechanics51 (1972) 273–29910.1017/S002211207200120XSearch in Google Scholar
45 Brinkman, H. C.: The viscosity of concentrated suspensions and solutions. J. Chemistry Phy.20 (1952) 571–58110.1063/1.1700493Search in Google Scholar
46 Chen, H.; Ding, Y.; Lapkin, A.: Rheological Behavior of Nanofluids Containing Tube/Rod-Like. Powder Technol.194 (2009) 132–14110.1016/j.powtec.2009.03.038Search in Google Scholar
47 Ward, S.; Whitmore, R.: Studies of the Viscosity and Sedimentation of Suspensions Part 1-The Viscosity of Suspension of Spherical Particles. British Journal of Applied Physics286 (1950) 1–610.1088/0508–3443/1/11/303Search in Google Scholar
48 Kitano, T.; Kataoka, T.; Shirota, T.: An Empirical Equation of the Relative Viscosity of Polymer Melts Filled With Various Inorganic Fillers. Rheological Acta.20 (1981) 207–20910.1007/BF01513064Search in Google Scholar
49 Bicerano, J.; Douglas, J. F.; Brune, D. A.: Model for the viscosity of particle suspensions. J. Macromolecular Sci. Rev.C 39 (1999) 561–64210.1081/MC-100101428Search in Google Scholar
50 Tseng, W. J.; Chen, C.: Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Materials Science and EngineeringA 347 (2003) 145–15310.1016/S0921-5093(02)00562-2Search in Google Scholar
51 Pak, B.C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. heat trans.11 (1998) 151–17010.1080/08916159808946559Search in Google Scholar
52 Maiga, E. B.; Nguyen, C. T.; Galanis, N.; Roy, G.: Heat transfer behaviors of nanofluids in a uniformly heated tube. Super lattices and Microstructures35 (2004) 543–55710.1016/j.spmi.2003.09.012Search in Google Scholar
53 Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technology196 (2009) 89–10110.1016/j.powtec.2009.07.025Search in Google Scholar
54 Lo, C. H.; Tsung, T. T.; Chen, L. C.: Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J. of Crystal Growth277 (2005) 636–64210.1016/j.jcrysgro.2005.01.067Search in Google Scholar
55 Lo, C. H.; Tsung, T. T.; Chen, L. C.; Su, C. H.; Lin, H. M.: Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J. of Nanoparticle Res.7 (2005) 313–32010.1007/s11051-004-7770-xSearch in Google Scholar
56 Zhu, H. T.; Lin, Y. S.; Yin, Y. S.: A novel one-step chemical method for preparation of copper nanofluids. J. of Colloid and Interface Science277 (2004) 100–103 15276044 10.1016/j.jcis.2004.04.026Search in Google Scholar PubMed
57 Zhu, H. T.; Zhang, C. Y.; Tang, Y. M.; Wang, J. X.: Novel synthesis and thermal conductivity of CuO nanofluid. J. of Physical ChemistryC 111 (2007) 1646–165010.1021/jp065926tSearch in Google Scholar
58 Wang, L.Fan, J.: Nanofluids research: key issues. Nanoscale Research Letters5 (2010) 1241–1252 20676214 10.1007/s11671-010-9638-6Search in Google Scholar
59 TrisaksriV.; Wongwises, S.: Critical review of heat transfer characteristics of nanofluids. Renewable and Sustainable Energy Reviews11 (2007) 512–52310.1016/j.rser.2005.01.010Search in Google Scholar
60 Ozerinc, S.Kakac, S.YazIcIoglu, A. G.: Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluidics and Nanofluidics8 (2010) 145–17010.1007/s10404-009-0524-4Search in Google Scholar
61 WangX. Q.; Mujumdar, A. S.: A review on nanofluids part I: theoretical and numerical investigations. Brazilian Journal of Chemical Engineering25 (2008) 613–63010.1590/S0104-66322008000400001Search in Google Scholar
62 Li, Y.Zhou, J.Tung, S.Schneider, E.Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technology196 (2009) 89–10110.1016/j.powtec.2009.07.025Search in Google Scholar
63 Kakac, S.Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. of Heat and Mass Transf.52 (2009) 3187–319610.1016/j.ijheatmasstransfer.2009.02.006Search in Google Scholar
64 Wong, K. V.; de Leon, O.: Applications of nanofluids: current and future. Advances in Mechanical Engineering (2010), Article ID 51965910.1155/2010/519659Search in Google Scholar
65 Donzelli, G.; Cerbino, R.; Vailati, A.: Bistable heat transfer in a nanofluid. Physical Review Letters102 (2009) Article ID 104503 19392118 10.1103/PhysRevLett.102.104503Search in Google Scholar
66 Arruebo, M.; Fernandez-Pacheco, R.; Ibarra, M. R.; Santamaria, J.: Magnetic nanoparticles for drug delivery. Nano Today2 (2007) 22–3210.1016/S1748-0132(07)70084-1Search in Google Scholar
67 Yu, W.; France, D. M.; Singh, D.; Timofeeva, E. V.; Smith, D. S.; Routbort, J. L.: Mechanisms and models of effective thermal conductivities of nanofluids. J. of Nanoscience and Nanotechnology10 (2010) 4824–4849 21125818 10.1166/jnn.2010.2413Search in Google Scholar
68 Ma, K. Q.; Liu, J.: Nano liquid-metal fluid as ultimate coolant. Physics Letters Section.361 (2007) 252–25610.1016/j.physleta.2006.09.041Search in Google Scholar
69 Paul, G.; Chopkar, M., Manna, I.; Das, P. K.: Techniques for measuring the thermal conductivity of nanofluids: a review. Renewable and Sustainable Energy Reviews14 (2010) 191310.1016/j.rser.2010.03.017Search in Google Scholar
70 Barbes, B.; Paramo, R.; Blanco, E.; Casanova, C.: Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J. Therm. Anal. Calorim.115 (2014) 1883–189110.1007/s10973-013-3518-0Search in Google Scholar
71 Roy, G.; Nguyen, C. T.; Lajoie, P.-R.: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattice. Microst.35 (2004) 497–51110.1016/j.spmi.2003.09.011Search in Google Scholar
72 Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf.46 (2003) 3639–365310.1016/S0017–9310(03)00156-XSearch in Google Scholar
73 Akbarinia, A.; Behzadmehr, A.: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Appl. Therm. Eng.27 (2007) 1327–133710.1016/j.applthermaleng.2006.10.034Search in Google Scholar
74 Akbarinia, A.; Laur, R.: Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach. Int. J. Heat Fluid Flow30 (2009) 706–71410.1016/j.ijheatfluidflow.2009.03.002Search in Google Scholar
75 Talebi, F.; Mahmoudi, A. H.; Shahi, M.: Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int. Commun. Heat Mass Transf.37 (2010) 79–9010.1016/j.icheatmasstransfer.2009.08.013Search in Google Scholar
76 Shahi, M.; Mahmoudi, A. H.; Talebi, F.: Numerical study of mixed convective cooling in 398 a square cavity ventilated and partially heated from the below utilizing nanofluid. Int. Commun. Heat Mass Transf.37 (2010) 201–21310.1016/j.icheatmasstransfer.2009.10.002Search in Google Scholar
77 Sundar, L. S.; Sharma, K.: Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int. J. Heat Mass Transf.53 (2010) 1409–141610.1016/j.ijheatmasstransfer.2009.12.016Search in Google Scholar
78 Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transf.47 (2004) 5181–518810.1016/j.ijheatmasstransfer.2004.07.012Search in Google Scholar
79 Bianco, V.; Chiacchio, F.; Manca, O.; Nardini, S.: Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering29 (2009) 3632–364210.1016/j.applthermaleng.2009.06.019Search in Google Scholar
80 Demir, H.; Dalkilic, A. S.; Kurekci, N. A.; Duangthongsuk, W.; Wongwises, S.: Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. Int. Commun. in Heat & Mass Transf.38 (2011) 218–22810.1016/j.icheatmasstransfer.2010.12.009Search in Google Scholar
81 Kumar, P. A.: CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid. World Academy of Science81 (2011) 746–750Search in Google Scholar
82 Heris, S. Z.; Etemad, S. G.; Esfahany, M. N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. in Heat and Mass Transf.33 (2006) 529–53510.1016/j.icheatmasstransfer.2006.01.005Search in Google Scholar
83 Namburu, P. K.; Das, D. K.; Tanguturi, K. M.; Vajjha, R. S.: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int. J. of Thermal Sci.48 (2009) 290–30210.1016/j.ijthermalsci.2008.01.001Search in Google Scholar
84 Hwang, K. S.; Jang, S. K.; Choi, S.U.S.: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int. J. of Heat and Mass Transf.52 (2009) 193–19910.1016/j.ijheatmasstransfer.2008.06.032Search in Google Scholar
85 Sharifi, A. M.; Emamzadeh, A.; Hamidi, A. A.; Farzaneh, H.; Rastgarpour, M.: Computer- Aided Simulation of Heat Transfer in Nanofluids. Proceedings of the International Multi Conference of Engineers and Computer scientists, Hong Kong, 2012Search in Google Scholar
86 Kim, D.; Kwon, Y.; Cho, Y.; Li, C.; Cheong, S.; Hwang, Y.; Lee, J.; Hong, D.; Moon, S.: Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics9 (2009) 119–12310.1016/j.cap.2008.12.047Search in Google Scholar
87 Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G.; Mare, T.; Coqueux, M.: Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. Int. J. of Num. Methods for Heat & Fluid Flow.16 (2006) 275–29210.1108/09615530610649717Search in Google Scholar
88 Lee, S.; Choi, S. U. S.: Application of metallic nanoparticle suspensions in advanced cooling systems. In: International Mechanical Engineering Congress and Exhibition. Atlanta, USA, 1996Search in Google Scholar
89 Xuan, Y.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. Transactions on ASME, J. of Heat Transf.125 (2003) 151–15510.1115/1.1532008Search in Google Scholar
90 Faulkner, D. J.; Rector, D. R.; Davidson, J.; Shekarriz, R.: Enhanced heat transfer through the use of nanofluids in forced convection. In: Proceedings of IMECE, Anaheim, California, USA, 200410.1115/IMECE2004-62147Search in Google Scholar
91 Yang, Y.; Zhang, Z. G.; Grulke, E. A.; Anderson, W. B.; Wu, G.: Heat transfer properties of nanoparticles-in-fluid dispersions (nanofluids) in laminar flow. Int. J. of Heat and Mass Transf.48 (2005) 1107–111610.1016/j.ijheatmasstransfer.2004.09.038Search in Google Scholar
92 Lee, C. H.; Kang, S.-W.; Kim, S. H.: Effects of nano-sized Ag particles on heat transfer of nanofluids. J. of Ind. Eng. Chem.11 (2005) 152–158Search in Google Scholar
93 Ding, Y.; Alias, H.; Wen, D.; Williams, R. A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. of Heat and Mass Transf.49 (2006) 240–25010.1016/j.ijheatmasstransfer.2005.07.009Search in Google Scholar
94 Zeinali Heris, S.; Nasr Esfahany, M.; Etemad, S. Gh.: Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube. J. Enh. Heat transf.13 (2006) 279–28910.1615/JEnhHeatTransf.v13.i4.10Search in Google Scholar
95 Zeinali Heris, S.; Nasr Esfahany, M.; Etemad, S. Gh.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. in Heat and Mass Transf.33 (2006) 529–53510.1016/j.icheatmasstransfer.2006.01.005Search in Google Scholar
96 Zeinali Heris, S.; Nasr Esfahany, M.; Etemad: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int. J. of Heat and Fluid Flow.28 (2007) 203–21010.1016/j.ijheatfluidflow.2006.05.001Search in Google Scholar
97 Nguyen, C. T.; Roy, G.; Gauthier, C.; Galanis, N.: Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system. App. Therm. Eng.27 (2007) 1501–150610.1016/j.applthermaleng.2006.09.028Search in Google Scholar
98 Chen, H.; Yang, W.; Ding, Y.; Zhang, L.; Tan, C.; Lapkin, A. A.; Bavykin, D. V.: Heat transfer and flow behaviour of suspensions of titanate nanotubes. Powd. Techno.183 (2008) 63–7210.1016/j.powtec.2007.11.014Search in Google Scholar
99 He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H.: Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. of Heat and Mass Transf.50 (2007) 2272–228110.1016/j.ijheatmasstransfer.2006.10.024Search in Google Scholar
100 Lai, W. Y.; Phelan, P. E.; Vinod, S.: Convective heat transfer for water-based alumina nanofluids in single 1.02 mm tube. In: 11th IEEE Intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronic Systems, vols. 1–3, pp. 970–978, 200810.1109/ITHERM.2008.4544372Search in Google Scholar
101 Kulkarni, D. P.; Namburu, P. K.; Bargar, H. E.; Das, D. K.: Convective heat transfer and fluid dynamic characteristics of SiO2-ethylene-glycol/water nanofluid. Heat Transf. Eng.29 (2008) 1027–103510.1080/01457630802243055Search in Google Scholar
102 Jung, J. Y.; Oh, H. S.; Kwak, H. Y.: Forced convective heat transfer of nanofluids in micro channels. Int. J. of Heat and Mass Transf.52 (2009) 466–47210.1016/j.ijheatmasstransfer.2008.03.033Search in Google Scholar
103 Sommers, A. D.; Yerkes, K. L.: Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. of Nanopart. Res.200910.1007/s11051-009-9657-3Search in Google Scholar
104 Yu, W.; France, D. M.; Smith, D. S.; Singh, D.; Timofeeva, E. V.; Routbort, J. L.: Heat transfer to a silicon carbide/water nanofluid. Int. J. of Heat and Mass Transf.52 (2009) 3606–361210.1016/j.ijheatmasstransfer.2009.02.036Search in Google Scholar
105 Hwang, K. S.; Jang, S. P.; Choi, S. U. S.: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer52 (2009) 193–19910.1016/j.ijheatmasstransfer.2008.06.032Search in Google Scholar
106 Fotukian, S. M.; Esfahany, M. N.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO-Water nanofluid inside a circular tube. Int. Commun. Heat Mass Trans.37 (2010) 214–21910.1016/j.icheatmasstransfer.2009.10.003Search in Google Scholar
107 Zamzamian, A.; Oskouie, S. N.; Doosthoseini, A.; Joneidi, A.; Pazouki, M.: Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp. Thermal and Fluid Sci.35 (2011) 49510.1016/j.expthermflusci.2010.11.013Search in Google Scholar
108 Syam Sundar, L.; Naik, M. T.; Sharma, K. V.; Singh, M. K.; Siva Reddy, T. Ch.: Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Thermal and Fluid Sci.37 (2012) 65–7110.1016/j.expthermflusci.2011.10.004Search in Google Scholar
109 You, S. M.; Kim, J.; Kim, K. H.: Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett.83 (2003) 3374–337610.1063/1.1619206Search in Google Scholar
110 Vassallo, P.; Kumar, R.; D'Amico, S.: Pool boiling heat transfer experiments in silica-water nano-fluids. Int. J. Heat Mass Transfer47 (2004) 407–41110.1016/S0017-9310(03)00361-2Search in Google Scholar
111 Tu, J. P.; Dinh, N.; Theofanous, T.: An experimental study of nanofluid boiling heat transfer. Proceedings of 6th Int. Symp. Heat Transfer, 2004Search in Google Scholar
112 KimH. D.; Kim, M. H.: Critical heat flux behavior in pool boiling of water-TiO2 nano-fluids. Proc. of Fourth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Sapporo, Japan, 2004Search in Google Scholar
113 MorenoJr., G.; Oldenburg, S.; You, S. M.; Kim, J. H.: Pool Boiling Heat Transfer of Alumina-Water, Zinc Oxide-Water and Alumina-Water Ethylene Glycol Nanofluids. Proc. of HT2005, pp. 17–22, 200510.1115/HT2005-72375Search in Google Scholar
114 BangC.; Chang, S. H.: Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nanofluids from a Plain Surface in a Pool. Int. J. Heat Mass Transfer48 (2005) 2407–241910.1016/j.ijheatmasstransfer.2004.12.047Search in Google Scholar
115 Kim, H. Kim, J. Kim, M.: Experimental study on CHF characteristics of water-TiO2 nano-fluids. Nuclear Engineering and Technology38 (2006) 61–68Search in Google Scholar
116 Milanova, D.; Kumar, R.; Kuchibhatla, S.; Seal, S.: Heat transfer behavior of oxide nanoparticles in pool boiling experiment. Proc. of 4th International Conference on Nanochannels, Microchannels and Minichannels, Limerick, Ireland, June 19–21, 200610.1115/ICNMM2006-96197Search in Google Scholar
117 Jackson, J. E.; Borgmeyer, B. V.; Wilson, C. A.; Cheng, P.; Bryan, J. E.: Characteristics of nucleate boiling with gold nanoparticles in water. Proc. of IMECE 2006, Chicago, November 5–10, 200610.1115/IMECE2006-16020Search in Google Scholar
118 Kim, S. J.Bang, I. C.Buongiorno, J.Hu, L. W.: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J Heat Mass Transfer50 (2007) 4105–411610.1016/j.ijheatmasstransfer.2007.02.002Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Reactor safety research within the Helmholtz Association
- Analysis of the impact of different scenarios on the simulation results of unauthorized dilution of boric acid in the coolant of the primary circuit of the NPP-2006
- Assessment of void fraction predictability of system codes in subchannels
- Review on using nanofluids for heat transfer enhancement in nuclear power plants
- Analysis of operating characteristics of IPWR under natural circulation
- Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Reactor safety research within the Helmholtz Association
- Analysis of the impact of different scenarios on the simulation results of unauthorized dilution of boric acid in the coolant of the primary circuit of the NPP-2006
- Assessment of void fraction predictability of system codes in subchannels
- Review on using nanofluids for heat transfer enhancement in nuclear power plants
- Analysis of operating characteristics of IPWR under natural circulation
- Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances