Reactor safety research within the Helmholtz Association
-
S. Kliem
, W. Tromm and E.-A. Reinecke
Abstract
The reactor safety research of the Helmholtz Association is an integral part of the national provident research. It focuses on the safety of nuclear power plants in Germany and abroad as well as on safety aspects of internationally developed innovative reactor concepts. The research in the three involved Helmholtz centers Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf and Karlsruhe Institute of Technology covers important areas of design basis and beyond design basis accidents. A unique combination of code and model development supported by own large-scale experiments ensures the active preservation of the reactor safety competences. The research that is embedded in a strong international co-operation will be continued after the completion of the national phase-out from the use of nuclear energy for electricity production in 2022.
Kurzfassung
Die Reaktorsicherheitsforschung in der Helmholtz-Gemeinschaft ist ein integraler Bestandteil der nationalen Vorsorgeforschung. Schwerpunkte sind dabei die Sicherheit von Kernkraftwerken im In- und Ausland sowie Sicherheitsaspekte von international entwickelten innovativen Reaktorkonzepten. Die Forschung in den drei beteiligten Helmholtz-Zentren Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf und Karlsruher Institut für Technologie deckt wichtige Bereiche der auslegungs- und auslegungsüberschreitenden Störfälle ab. Eine unikale Kombination aus Code- und Modellentwicklung, unterstützt durch Experimente an eigenen Großversuchsanlagen, sichert den aktiven Erhalt der Reaktorsicherheitskompetenz ab. Diese Forschung, die in eine starke internationale Zusammenarbeit eingebettet ist, wird nach der kompletten Umsetzung des nationalen Ausstiegs aus der Nutzung der Kernenergie zur Stromerzeugung im Jahr 2022 fortgesetzt.
References
1 Kliem, S. et al.: The reactor dynamics code DYN3D. Kerntechnik81 (2016) 170–17210.3139/124.110692Search in Google Scholar
2 Chanaron, B. et al.: Advanced Multiphysics Simulation for Reactor Safety in the framework of the NURESAFE project. Annals of Nucl. Energy84 (2015) 166–17710.1016/j.anucene.2014.12.013Search in Google Scholar
3 Kliem, S. et al.: Testing the NURESIM platform on a PWR main steam line break benchmark. Nucl. Eng. Design321 (2017) 8–2510.1016/j.nucengdes.2017.05.028Search in Google Scholar
4 Imke, U.; Sanchez, V.; and Gomez, R.: Subchanflow: A new empirical knowledge based subchannel code. In: Proceedings of KTG Annual Meeting on Nuclear Technology, Berlin, Germany (2010)Search in Google Scholar
5 Bilodid, Y. et al.: Assessment of spectral history influence on PWR and WWER core. Kerntechnik77 (2012) 278–28510.3139/124.110254Search in Google Scholar
6 Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.: Hybrid microscopic depletion model in nodal code DYN3D. Annals of Nucl. Energy92 (2016) 397–40610.1016/j.anucene.2016.02.012Search in Google Scholar
7 Kliem, S. et al.: Development of multi-physics code systems based on the reactor dynamics code DYN3D. Kerntechnik76 (2011) 160–16510.3139/124.110146Search in Google Scholar
8 Grahn, A.; Kliem, S.; Rohde, U.: Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS CFX. Annals of Nucl. Energy84 (2015) 197–20310.1016/j.anucene.2014.12.015Search in Google Scholar
9 Grahn, A.; Gommlich, A.; Kliem, S.; Bilodid, Y.; Kozmenkov, Y.: Coupling of the 3D neutron kinetic core model DYN3D with the CFD software TRIO_U and simulation of an MSLB scenario. Nucl. Eng. Design315 (2017) 117–12710.1016/j.nucengdes.2017.02.002Search in Google Scholar
10 Däubler, M. et al.: High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW. Annals of Nucl. Energy83 (2015) 352–37510.1016/j.anucene.2015.03.040Search in Google Scholar
11 IvanovA. et al.: Large-scale Monte Carlo neutron transport calculations with thermal hydraulic feedback. Annals of Nucl. Energy84 (2015) 204–21910.1016/j.anucene.2014.12.030Search in Google Scholar
12 Nikitin, E.; Fridman, E.; Bilodid, Y.; Kliem, S.: New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses. Kerntechnik82 (2017) 284–28810.3139/124.110803Search in Google Scholar
13 Rachamin, R.; Wemple, C.; Fridman, E.: Neutronic analysis of SFR core with HELIOS-2, SERPENT, and DYN3D codes. Annals of Nucl. Energy55 (2013) 194–20410.1016/j.anucene.2012.11.030Search in Google Scholar
14 Leppänen, J.; Pusa, M.; Fridman, E.: Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code. Annals of Nucl. Energy,96 (2016) 126–13610.1016/j.anucene.2016.06.007Search in Google Scholar
15 Kozmenkov, Y., Kliem, S., Rohde, U.: Validation and verification of the coupled neutron kinetic/thermalhydraulic system code DYN3D/ATHLET. Annals of Nucl. Energy,84 (2015) 153–16510.1016/j.anucene.2014.12.012Search in Google Scholar
16 Lucas, D.; Beyer, M.; Pietruske, H.; Szalinski, L.: Counter-current flow limitation for air-water and steam-water flows in a PWR hot leg geometry. Nucl. Eng. Design323 (2017) 56–6710.1016/j.nucengdes.2017.07.032Search in Google Scholar
17 Mérigoux, N. et al.: CFD codes benchmark on TOPFLOW-PTS experiment. Nucl. Eng. Design321 (2017) 288–30010.1016/j.nucengdes.2016.10.030Search in Google Scholar
18 Seidel, T.; Beyer, M.; Lucas, D.; Hampel, U.: Experimental studies on high-pressure high-temperature contact-condensation at falling jets in the TOPFLOW pressure-tank. Nucl. Eng. Design336 (2018) 54–6310.1016/j.nucengdes.2017.05.031Search in Google Scholar
19 Lucas, D., et al.: A strategy for the qualification of multi-fluid approaches for nuclear reactor safety. Nucl. Eng. Design299 (2016) 2–1110.1016/j.nucengdes.2015.07.007Search in Google Scholar
20 Liao, Y.; Lucas, D.: Poly-disperse simulation of condensing steam-water flow inside a large vertical pipe. Int. J. Thermal Sciences104 (2016) 194–20710.1016/j.ijthermalsci.2016.01.016Search in Google Scholar
21 Hänsch, S.; Lucas, D.; Krepper, E.; Höhne, T.: A multi-field two-fluid concept for transitions between different scales of interfacial structures. Int. J. Multiphase Flow47 (2012) 171–18210.1016/j.ijmultiphaseflow.2012.07.007Search in Google Scholar
22 Gabriel, S. et al.: Experimental Investigations of the Critical Heat Flux in a modular Test Section under high Pressure Conditions. ProcessNet-Fachgruppe Wärme- und Stoffübertragung, Bruchsal (2017)Search in Google Scholar
23 StuckertJ. et al.: QUENCH-LOCA program at KIT on secondary hydriding and results of the commissioning bundle test QUENCH-L0. Nucl. Eng. Design255 (2013) 185–20110.1016/j.nucengdes.2012.10.024Search in Google Scholar
24 Wagner, A. et al.: Effect of neutron flux on the characteristics of irradiation-induced nanofeatures and hardening in pressure vessel steels. Acta Materialia,104 (2016) 131–14210.1016/j.actamat.2015.11.027Search in Google Scholar
25 Bergner, F. et al.: Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys. J. Nuclear Materials448 (2014) 96–10210.1016/j.jnucmat.2014.01.024Search in Google Scholar
26 Heintze, C.; Bergner, F.; Akhmadaliev, S.; Altstadt, E.: Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening. J. Nuclear Materials472 (2016) 196–20510.1016/j.jnucmat.2015.07.023Search in Google Scholar
27 Heintze, C. et al.: Irradiation hardening of Fe-9Cr-based alloys and ODS Eurofer: effect of helium implantation and iron-ion irradiation at 300°C including sequence effects. J. Nuclear Materials470 (2016) 258–26710.1016/j.jnucmat.2015.12.041Search in Google Scholar
28 Gómez García-Toraño, I. et al.: Analysis of primary bleed and feed strategies for selected SBLOCA sequences in a German KONVOI PWR using ASTEC V2.0. Annals of Nucl. Energy110 (2017) 818–83210.1016/j.anucene.2017.08.003Search in Google Scholar
29 Di Marcello, V. et al.: Validation and application of the system code ATHLET-CD for BWR severe accident analyses. Nucl. Eng. Design307 (2016) 284–29810.1016/j.nucengdes.2016.07.013Search in Google Scholar
30 Tusheva, P. et al.: Assessment of accident management measures on early in-vessel station blackout sequence at VVER-1000 pressurized water reactors. Nucl. Eng. Design277 (2014) 106–11610.1016/j.nucengdes.2014.06.011Search in Google Scholar
31 Tusheva, P. et al.: Investigations on in-vessel melt retention by external cooling for a generic VVER-1000 reactor. Annals of Nucl. Energy75 (2015) 249–26010.1016/j.anucene.2014.07.044Search in Google Scholar
32 Kozmenkov, Y. et al.: Statistical Analysis of the Early Phase of SBO Accident for PWR. Nucl. Eng. Design314 (2017) 131–14110.1016/j.nucengdes.2017.02.001Search in Google Scholar
33 Reinecke, E.-A.; Kelm, S.; Steffen, P.-M.; Klauck, M.; Allelein, H.-J.: Validation and application of the REKO-DIREKT code for the simulation of passive auto-catalytic recombiners (PARs) operational behavior. Nuclear Technology196 (2016) 355–36610.13182/NT16–7Search in Google Scholar
34 Kelm, S.; Kapulla, R.; Allelein, H.-J.: Erosion of a confined stratified layer by a vertical jet – Detailed assessment of a CFD approach against the OECD/NEA PSI benchmark. Nucl. Eng. Design312 (2017) 228–23810.1016/j.nucengdes.2016.09.014Search in Google Scholar
35 Studer, E.; Alengry, J.; Abdo, D.; Dabbene, F.; Kelm, S.; Bagge-mann, J.; Reinecke, E.; Allelein, H.-J.: Hydrogen mobilization by Passive Autocatalytic Recombiners. Proc. NUTHOS-11, Gyeongju, Korea (2016)Search in Google Scholar
36 Dehbi, A.; Kelm, S.; KalilainenJ.; Müller, H.: The influence of thermal radiation on the free convection inside enclosures. Proc. ERMSAR-8, Warsaw, Poland (2017)Search in Google Scholar
37 Kelm, S. et al.: A review of the CFD modeling progress triggered by the ISP-47 on containment thermal hydraulics. Proc. Int. Top. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-17), Xi'an, China (2017)10.1080/00295639.2018.1503858Search in Google Scholar
38 Steinbrück, M. et al.: Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200°C, J. Nuclear Materials490 (2017) 226–23710.1016/j.jnucmat.2017.04.034Search in Google Scholar
39 Miassoedov, A. et al.: LIVE Experiments on Melt Behavior in the Reactor Pressure Vessel Lower Head. Heat Transfer Engineering34 (2013) 1226–123610.1080/01457632.2013.777247Search in Google Scholar
40 Miassoedov, A. et al.: Ex-vessel fuel-coolant interaction experiment in the DISCO facility in the LACOMECO project. J. Nucl. Sci. Technol.53 (2016) 639–64610.1080/00223131.2015.1127785Search in Google Scholar
41 Allelein, H.-J. et al.: COCOSYS: Status of development and validation of the German containment code system. Nucl. Eng. Design238 (2008) 872–88910.1016/j.nucengdes.2007.08.006Search in Google Scholar
42 Foit, J. et al.: Experiments on MCCI with oxide and steel. Annals of Nucl. Energy74 (2014) 100–10910.1016/j.anucene.2014.06.025Search in Google Scholar
43 Hundhausen, A.; MüllerH.; Allelein, H.-J.: CFD-grade measurements in a condensing boundary layer – results of the SETCOM facility. Proc. Int. Top. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-17), Xi'an, China (2017)Search in Google Scholar
44 Reinecke, E.-A.; Kelm, S.; Heidelberg, D.; Klauck, M.; Steffen, P.-M.; Allelein, H.-J.: Modeling the start-up behavior of passive auto-catalytic recombiners in REKO-DIREKT. Proc. ERMSAR-8, Warsaw, Poland (2017)Search in Google Scholar
45 Steffen, P.-M.; Reinecke, E.-A.; Meynet, N.; Bentaib, A.; Chaumeix, N.; Allelein, H.-J.: Operational behavior of a passive auto-catalytic recombiner under low pressure conditions. Fusion Engineering and Design124 (2017) 1281–128610.1016/j.fusengdes.2017.02.019Search in Google Scholar
46 Allelein, H.-J.; Kubelt, C.; Reinecke, E.-A.: Impact of cable fire products on severe accident processes. Proc. ICAPP, Fukui and Kyoto, Japan (2017)Search in Google Scholar
47 Möhrle, S.; Raskob, W.: Structuring and reusing knowledge from historical events for supporting nuclear emergency and remediation management. Eng. Appl. Artif. Intell.46 (2015) 303–31110.1016/j.engappai.2015.07.010Search in Google Scholar
48 Schneider, T. et al.: Nuclear and Radiological Preparedness: The Achievements of the European Research Project PREPARE. Radiation Protection Dosimetry173 (2017) 151–156 27885092 10.1093/rpd/ncw318Search in Google Scholar PubMed
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Reactor safety research within the Helmholtz Association
- Analysis of the impact of different scenarios on the simulation results of unauthorized dilution of boric acid in the coolant of the primary circuit of the NPP-2006
- Assessment of void fraction predictability of system codes in subchannels
- Review on using nanofluids for heat transfer enhancement in nuclear power plants
- Analysis of operating characteristics of IPWR under natural circulation
- Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Reactor safety research within the Helmholtz Association
- Analysis of the impact of different scenarios on the simulation results of unauthorized dilution of boric acid in the coolant of the primary circuit of the NPP-2006
- Assessment of void fraction predictability of system codes in subchannels
- Review on using nanofluids for heat transfer enhancement in nuclear power plants
- Analysis of operating characteristics of IPWR under natural circulation
- Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances