Porosity evolution study in irradiated UO2 fuel based on fuel matrix swelling
-
B. Roostaii
, H. Kazeminejad and S. Khakshournia
Abstract
The volume porosity of irradiated UO2 fuel in the form of a correlation is developed which includes two individual parts as the pore and swelling porosity in terms of the local density and fractional matrix swelling. Based on a low temperature swelling model for UO2 fuel, the matrix swelling terms are calculated and the evolution of porosity up to burn-up levels of 120 MWd/KgU is presented. It is seen that for high burn-up PWR fuel pellet rim, the dominant contribution to total porosity comes from pores generated due to Xe depletion in the ceramic matrix while the nearly constant swelling porosity makes a small contribution to the total porosity. The porosity evolution is also validated by comparing against experimental data and a fairly good agreement was found.
Kurzfassung
In diesem Beitrag wird eine Korrelation zur Bestimmung der Volumenporosität von bestrahltem UO2-Brennstoff aus den zwei Einzelteilen der Poren- und Quellporosität entwickelt und in Abhängigkeit von der lokalen Dichte und der Matrixquellung angegeben. Basierend auf einem Tieftemperaturquellmodell werden die Matrixquellbedingungen berechnet und die Entwicklung der Porosität bis zu einem Abbrand von 120 MWd/KgU für UO2 dargestellt. Es zeigt sich, dass der dominante Beitrag zur Gesamtporosität bei hochverbrannten PWR-Brennstofftablettenfelgen aus der Porosität der Poren kommt, die durch Xe-Verarmung in der Keramikmatrix erzeugt werden. Gleichzeitig liefert die nahezu konstante Quellporosität einen kleinen Beitrag zur Gesamtporosität. Die Porositätsentwicklung wird auch durch einen Vergleich mit experimentellen Daten validiert und es wurde eine recht gute Übereinstimmung gefunden.
References
1 Lassmann, K.; Walker, C. T.; van de Laar, J.; LindstromF.: Modeling the high burn up structure in LWR fuel. Journal of Nuclear Materials226 (1995) 1–810.1016/0022-3115(95)00116-6Search in Google Scholar
2 Walker, C. T.: Assessment of the radial extent and completion of recrystallisation in high burn-up UO2 nuclear fuel by EPMA Journal of Nuclear Materials275 (1999) 56–6210.1016/S0022-3115(99)00108-7Search in Google Scholar
3 Holt, L.; Schubert, A.; Van Uffelen, P.; Walker, C. T.; Fridmanv, E.; et al.: Sensitivity study on Xe depletion in the high burn-up structure of UO2. Journal of Nuclear Materials452 (2014) 166–17210.1016/j.jnucmat.2014.05.009Search in Google Scholar
4 Spino, J., Vennix, K., Coquerelle, M.: Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40–67 GWd/tM. Journal of Nuclear Materials231 (1996) 179–19010.1016/0022-3115(96)00374-1Search in Google Scholar
5 Spino, J.; Rest, J.; Goll, W.; WalkerC. T.: Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up. Journal of Nuclear Materials346 (2005) 131–14410.1016/j.jnucmat.2005.06.015Search in Google Scholar
6 Blair, P.; Romano, A.; Hellwig, Ch.; Chawla, R.: Calculations on fission gas behavior in the high burnup structure. Journal of Nuclear Materials350 (2006) 232–23910.1016/j.jnucmat.2006.01.006Search in Google Scholar
7 Romano, A.; Horvath, M. I.; Restani, R.: Evolution of porosity in the high-burnup fuel structure. Journal of Nuclear Materials361 (2007) 62–6810.1016/j.jnucmat.2006.09.016Search in Google Scholar
8 Koo, Y. H.; Oh, J. Y.; Lee, B. H.; Sohn, D. S.: Three-dimensional simulation of threshold porosity for fission gas release in the rim region of LWR UO2 fuel. Journal of Nuclear Materials321 (2003) 249–25510.1016/S0022-3115(03)00249-6Search in Google Scholar
9 Rest, J.; Kagana, G.: A physical description of fission product behavior in fuels for advanced power reactors, Argonne National Laboratory USA, 200710.2172/919331Search in Google Scholar
10 Konings, R. J. M.: Comprehensive Nuclear Materials, Elsevier, 2012Search in Google Scholar
11 Rest, J.: A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and U–10Mo nuclear fuels. Journal of Nuclear Materials346 (2005) 226–23210.1016/j.jnucmat.2005.06.012Search in Google Scholar
12 Nakae, N.; Kirihara, T.: Irradiation induced volume change in UO2. Journal of Nuclear Materials74 (1978)1–9 10.1016/0022–3115(78)90526–3Search in Google Scholar
13 Assmann, H.; Manzel, R.: The matrix swelling rate of UO2. Journal of Nuclear Materials68 (1977) 360–36410.1016/0022-3115(77)90266-5Search in Google Scholar
14 Zimmermannc, H.: Investigations on swelling and fission gas behavior in uranium dioxide. Journal of Nuclear Materials75 (1978) 154–16110.1016/0022-3115(78)90039-9Search in Google Scholar
15 Gao, L.; Chen, B.; Xiao, Z.; Jiang, S.; Yu, J.: Modelling the irradiation swelling of UO2 at the fuel pellet rim in Proceedings of ICONE 21, 201310.1115/ICONE21-15009Search in Google Scholar
16 Rest, J.: The DART Dispersion Analysis Research Tool: A Mechanistic Model for Predicting Fission-Product-Induced Swelling of Aluminum Dispersion Fuels, AN L-95/36, 199510.2172/149983Search in Google Scholar
17 Olander, D. R.: Fundamental aspects of nuclear fuel elements, Technical Information Center & Energy Research and Development Administration (publisher) USA, 197610.2172/7343826Search in Google Scholar
18 Lemes, M.; Soba, A.; Denis, A.: An empirical formulation to describe the evolution of the high burnup structure Journal of Nuclear Materials456 (2015) 174–18110.1016/j.jnucmat.2014.09.048Search in Google Scholar
19 Spino, J; Stalios, A. D.; Santa Cruz, H.; Baron, D.: Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: dependencies with burnup and temperature. Journal of Nuclear Materials354 (2006) 66–8410.1016/j.jnucmat.2006.02.095Search in Google Scholar
20 Fuel analysis and licensing code: FALCON MOD01–volume 1: theoretical and numerical bases. Technical Report, EPRI-1011307, 2004Search in Google Scholar
21 Berna, G. A.; Beyer, C. E.; Davis, K. L.; Lanning, D. D.: FRAPCON-3: A Computer Code for the Calculation of Steady-state, Thermal- Mechanical Behavior of Oxide Fuel Rods for High Burnup, Technical Report NUREG/CR-6534, PNNL-11513, 1997, Vol. 210.2172/576110Search in Google Scholar
22 Lassmann, K.; Schubert, A.; van de Laar, J.: TRANSURANUS Handbook, Technical Report Document Number Version 1 Modification 1, (V1M1J2003), 2003Search in Google Scholar
23 Kilgour, W. J.; Turnbull, J. A.; White, R. J.; Bull, A. J.; Jackson, P. A.; Palmer, I. D.: Capabilities and validation of the ENIGMA fuel performance code, Proceedings of the ENS Meeting on LWR Fuel Performance, Avignon, France, 1992 1497649Search in Google Scholar
24 Ito, K.; Ichikawa, M.; Okubo, T.; Iwano, Y.: FEMAXI-III, a computer code for fuel rod performance analysis. Nuclear Engineering and Design.76 (1983) 3–1110.1016/0029-5493(83)90042-0Search in Google Scholar
25 Williamson, R. L.; Hales, J. D.; Novascone, S. R.; Tonks, M. R.; Gaston, D. R.; Permann, C. J.; Andrš, D.; Martineau, R. C.: Multidimensional multiphysics simulation of nuclear fuel behavior. Journal of Nuclear Materials423 (1–3) (2012) 149–16310.1016/j.jnucmat.2012.01.012Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Porosity evolution study in irradiated UO2 fuel based on fuel matrix swelling
- Data collection assessment for the human performance analysis in nuclear installations
- Abnormal control rod withdrawal analysis for innovative research reactor using PARET-ANL codes
- Improving CANDU performance by using uranium – thorium mixed oxide fuel
- Computation of gamma radioactivity of natural rocks in the vicinity of Antalya province and its effect on health
- Calculation of liquid waste discharge limits for routine discharge of Tehran research reactor
- Thermal hydraulic assessment of a new design of PWR fuel assembly
- Simulation of error in suppression of Xenon oscillations in a WWER-1000 nuclear reactor
- A novel dual-molality densitometer for gauging in annular two phase flows using radial basis function
- Design and construction of toroidal field coil for Taban device
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Porosity evolution study in irradiated UO2 fuel based on fuel matrix swelling
- Data collection assessment for the human performance analysis in nuclear installations
- Abnormal control rod withdrawal analysis for innovative research reactor using PARET-ANL codes
- Improving CANDU performance by using uranium – thorium mixed oxide fuel
- Computation of gamma radioactivity of natural rocks in the vicinity of Antalya province and its effect on health
- Calculation of liquid waste discharge limits for routine discharge of Tehran research reactor
- Thermal hydraulic assessment of a new design of PWR fuel assembly
- Simulation of error in suppression of Xenon oscillations in a WWER-1000 nuclear reactor
- A novel dual-molality densitometer for gauging in annular two phase flows using radial basis function
- Design and construction of toroidal field coil for Taban device