Home Technology Calculation of liquid waste discharge limits for routine discharge of Tehran research reactor
Article
Licensed
Unlicensed Requires Authentication

Calculation of liquid waste discharge limits for routine discharge of Tehran research reactor

  • M. E. Adelikhah , R. Ahangari and O. Noori
Published/Copyright: March 26, 2018
Become an author with De Gruyter Brill

Abstract

One of the most important technical documents for obtaining of a reactor license (site selection, design, construction and operation license) from IINRA is public dose assessment and calculation of discharge limits into the environment. Presence of population centers and aquifers adjacent of nuclear installations is a crucial rule in public dose assessment and determination of liquid release limits into the environment. In this paper, liquid waste of TRR regards as liquid released in sewage system. The migration of radionuclides released to well through the ingestion of radionuclides via drinking water and human food-chain, inhalation of radionuclides and external irradiation from radionuclides in soil and water was modeled using the AMBER software. Then, amount of liquid released to environment with different amount of distribution coefficient, as an important effective parameter in simulation, is determined. The calculation of discharge limits shows that the liquid radioactive waste is lower than the values given into the Environmental Assessment for Tehran Research Reactor report. So the received dose doesn't exceed the dose limit of 10 μSvyr−1 for members of the public which is approved by INRA.

Kurzfassung

Die Bestimmung der von der Anlage verursachten Dosen für die Bevölkerung und die Berechnung der von der Anlage an die Umwelt abgegebenen Stoffe waren wichtige Bestandteile bei der Betriebsgenehmigung (Standortwahl, Planung, Bau- und Betriebsgenehmigung) des Forschungsreaktors Tehran (TRR) durch IINRA. Dabei müssen sowohl die bewohnten Gebiete als auch die Grundwassereinzugsgebiete bei der Berechnung und Festlegung der Grenzwerte berücksichtigt werden. In diesem Beitrag wird der Unterpunkt flüssiger Abfall des TRR, der in das Abwassersystem freigesetzt wird, betrachtet. Dazu wird eine neue Berechnung mit dem Programm AMBER durchgeführt. Dabei wird die Migration von Radionukliden, die durch die Aufnahme von Radionukliden über Trinkwasser und die menschliche Nahrungskette, die Inhalation von Radionukliden und die externe Bestrahlung von Radionukliden in Boden und Wasser in den Brunnen freigesetzt werden, berücksichtigt. Anschließend wird die Menge der in die Umgebung freigesetzten Flüssigkeit mit unterschiedlichem Verteilungskoeffizienten als wichtigstem Parameter der Simulation bestimmt. Die Berechnung der Ableitungsgrenzwerte zeigt, dass die Dosis der flüssigen radioaktiven Abfälle unterhalb des genehmigten Grenzwertes von 10 μSvyr-1 für die Öffentlichkeit liegt.


* E-mail:

References

1 IAEA: Regulatory Control of Radioactive Discharges to the Environment. Safety Standards Series No. WS-G-2.3, International Atomic Energy Agency, Vienna, 2000Search in Google Scholar

2 IAEA: Setting Authorized Limits for Radioactive Discharges: Practical Issues to Consider. IAEA-TECDOC-1638, International Atomic Energy Agency, Vienna, 2010Search in Google Scholar

3 Environment Agency guidance: Criteria for setting limits on the discharges of radioactive waste from nuclear sites. (no document number) 2012Search in Google Scholar

4 DECC (Department of Energy and Climate Change): Statutory Guidance to the Environment Agency concerning the regulation of radioactive discharges into the environment. DECC, July 2009Search in Google Scholar

5 Watkins, B. M.; Smith, G. M.; Little, R. H.; Kessler, J.: A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository. Health Physics,76 (1999) 355367 10086596 10.1097/00004032-199904000-00003Search in Google Scholar PubMed

6 Enviros and Quintessa: AMBER 4.4 Reference Guide. Version 1.01e, April 2003, Enviros Consulting Ltd. Abingdon, UK, 2003Search in Google Scholar

7 Partoshenakht Co.: Ground water study of North Karegar district in Tehran. Report: Environmental Assessment for Tehran Research Reactor (TRR), 2009, TRREAR- 01/0, 2003Search in Google Scholar

8 Atomic Energy Organization of Iran (AEOI): Environmental Assessment for Tehran Research Reactor, 2008Search in Google Scholar

9 IAEA: ISAM, the International Program for Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities: Objectives, Content and Work Program. Final Version, International Atomic Energy Agency, Vienna, 1997Search in Google Scholar

10 Agüero, A.; Moraleda, M.; Pérez-Sanchez, D.; Trueba, C.: Mathematical representation of features, events and processes (FEPs) and associated parameters for biosphere assessment. Ed. CIEMAT, Madrid, 2005Search in Google Scholar

11 Envirous Consulting Limited: Amber 5 Reference Guide. United KingdomSearch in Google Scholar

12 IAEA: Procedures and data, performance assessment for underground radioactive waste disposal systems. Safety Series No. 68, International Atomic Energy Agency, Vienna, 1985Search in Google Scholar

13 IAEA: Safety principles and technical criteria for the underground disposal of high level radioactive wastes. Safety Series Report No. 99, International Atomic Energy Agency, Vienna, 1989Search in Google Scholar

14 BIOMASS: Alternative assessment contexts: implications for development of reference biospheres and biosphere modeling. BIOMASS Theme 1 Working Document: BIOMASS/T1/WD02, International Atomic Energy Agency, Vienna, 1999Search in Google Scholar

15 BIOMOVS: Development of a reference biospheres methodology for radioactive waste disposal. BIOMOVS II Technical Report No. 6, Swedish Radiation Protection Institute, Stockholm, Sweden, 1996Search in Google Scholar

16 International Commission on Radiological Protection: Age Dependent Doses to the Members of the Public from Intake of Radionuclides, ICRP 72, Annals of ICRP26 (1996) 1Search in Google Scholar

17 EPA (U.S Environment Protection Agency): External Exposure of Radionuclides in Air, Water and Soil. Federal Guidance Report No. 12, EPA 402-R-93-081, September 1993.Search in Google Scholar

18 EPA (U.S Environment Protection Agency): Exposure Factors Handbook, EPA/600/R-09/052Fa (Office of Research and Development, National Center for Environmental Assessment, Washington, D.C), 2011Search in Google Scholar

19 IAEA: Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments. Technical Reports Series No. 364, International Atomic Energy Agency, Vienna, 1994Search in Google Scholar

20 Atomic Energy Organization of Iran (AEOI): Safety Analysis Report for Tehran Research Reactor, 2007Search in Google Scholar

Received: 2017-01-07
Published Online: 2018-03-26
Published in Print: 2018-04-16

© 2018, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110883/pdf
Scroll to top button