Experimental investigation on the distribution of spray water in a spent fuel-assembly simulator
-
Sh. Gao
, D. G. Lu , H. Wang , Q. Cao and Y. D. Han
Abstract
The spent fuel pool cooling system in a nuclear power plant, which is comprised mainly by the cooling pumps and heat exchangers, ensures the safety of the spent fuel assemblies and the integrity of the fuel rods during the period of storage. With the development of the passive cooling technique, a spray cooling system for the spent fuels based on the gravity was designed to further enhance the safety of the spent fuel pool in case of accident conditions. This paper presents an experimental investigation of the validity of the spray-cooling system using two types of tight rod bundles, namely a 5 × 5 heated rod bundle and a 17 × 17 isothermal rod bundle. Results shows that the rod bundle heated with a lower power can be effectively cooled only by air without any spray water. With the increase of the heated power, the rod surface temperature increases gradually and the spray cooling has to be implemented to maintain the wall temperature at a certain level. The effect of flow rate on wall temperature was investigated. For the isothermal rod bundle, main interests were focused on the distribution of the spray water after it flowed along the rods.
Kurzfassung
Das Kühlsystem in einem Brennelementlagerbecken eines Kernkraftwerks, das hauptsächlich aus Kühlpumpen und Wärmetauschern besteht, gewährleistet die Sicherheit der abgebrannten Brennelemente und die Unversehrtheit der Brennstäbe während der Lagerung. Mit der Entwicklung der passiven Kühltechnik wurde ein auf der Schwerkraft basierendes Sprühkühlsystem für die abgebrannten Brennelemente entwickelt, das die Sicherheit des Brennelementlagerbeckens bei Unfällen weiter erhöhen soll. In diesem Beitrag wird eine experimentelle Untersuchung dieses Sprühkühlsystems für zwei Arten von dicht gepackten Brennelementbündeln, nämlich einem 5 × 5 beheizten Stabbündel und einem 17 × 17 isothermen Stabbündel, vorgestellt. Die Ergebnisse zeigen, dass das mit geringerer Leistung beheizte Stabbündel nur durch Luft und ohne Spritzwasser effektiv gekühlt werden kann. Mit der Erhöhung der Heizleistung steigt die Staboberflächentemperatur allmählich an und die Sprühkühlung muss durchgeführt werden, um die Wandtemperatur auf einem bestimmten Niveau zu halten. Die Auswirkungen der Strömungsgeschwindigkeit auf die Wandtemperatur wurden untersucht. Beim isothermen Stabbündel lag das Hauptinteresse auf der Verteilung des Sprühwassers, nachdem es entlang der Stäbe nach unten fließt.
References
1 Jaeckel, B. S.: Status of the spent fuel in the reactor buildings of Fukushima Daiichi 1–4. Nuclear Engineering and Design283 (2015) 2–710.1016/j.nucengdes.2014.07.007Search in Google Scholar
2 Ahn, K.-I.; Shin, J.-U.; Kim, W.-T.: Severe accident analysis of plant-specific spent fuel pool to support a SFP risk and accident management. Annals of Nuclear Energy89 (2016) 70–8310.1016/j.anucene.2015.11.024Search in Google Scholar
3 Shanshan, L.; Songlin, L.: Design requirements and program of condition monitoring for spent fuel pool in nuclear power plant. TECHNOLOGICAL PIONEERS04 (2014) 187–188Search in Google Scholar
4 Ye, C.; Zheng, M. G.: The design and simulation of a new spent fuel pool passive cooling system. Annals of Nuclear Energy58 (2013) 124–13110.1016/j.anucene.2013.03.007Search in Google Scholar
5 Zhenqin, X.; Minglu, W.: Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool. Annals of Nuclear Energy83 (2015) 258–26310.1016/j.anucene.2015.03.045Search in Google Scholar
6 Pigott, D. G.; White, E. P.: Wetting Delay due to film and transition boiling on hot surfaces. Nuclear Engineering and Design36 (1976) 169–18110.1016/0029-5493(76)90003-0Search in Google Scholar
7 Monde, M.: Critical Heat Flux in Saturated Forced Convection Boiling on a Heated Disk With an Impinging Jet. Transactions of the ASME109 (1987) 991–99610.1115/1.3248215Search in Google Scholar
8 Xia, S.: Pressurized Water Reactor Nuclear Power Plant Spent Fuel Pool Spray System Design. Value Engineering17 (2013) 48–49Search in Google Scholar
9 Zhongwei, Zh.; Guoxing, L.: Safety Analysis of Loss of Cooling Accident for Typical Spent Fuel Pool. Nuclear Power Engineering36 (2015) 149–153Search in Google Scholar
10 NB/T20056. Calculation of the decay heat of the nuclear fuel in a light water reactor. China: National Energy Administration, 2011Search in Google Scholar
11 US NR. “Standard Review Plan for Dry Cask Storage Systems”, NUREG-1536(1997)Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- 2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
- Technical Contributions/Fachbeiträge
- Challenging issues and recent R&D activities for enhancing nuclear safety in Korea
- Necessary improvements of the GRS simulation chain for the simulation of light-water-cooled SMRs
- Scaling analysis of core pressure drop in reduced height integral test facility
- Criteria and comparison of thermal stratification between PRHR HX heating and ADS spraying process in IRWST based on a down-scaled experimental facility
- Numerical simulation of bubble growth on and departure from the heated surface by an improved lattice Boltzmann model
- Improvements of interfacial friction and heat transfer models for rectangular narrow channel reflood simulation based on RELAP5
- Proposal of a novel CHF correlation for PWR under low pressure conditions based on stepwise regression method
- Mechanistic prediction of post dryout heat transfer and rewetting
- Investigation of condensation process at COSMEA test facility with ATHLET code
- Research on thermal-hydraulic behavior in the spent fuel pool using a full-height experimental facility
- Experimental investigation on the distribution of spray water in a spent fuel-assembly simulator
- Wet resuspension modelling and validation
- Analysis code development for the direct reactor auxiliary cooling system of the pool-type sodium-cooled fast reactor
- Comparison of heat transfer models with databank of supercritical fluid
- Blankets – key element of a fusion reactor – functions, design and present state of development
- Preliminary steady and transient analysis for the CFETR helium cooled solid blanket system with RELAP
- A methodology for thermo-mechanical assessment of in-box LOCA events on fusion blankets and its application to EU DEMO HCPB breeding blanket
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- 2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
- Technical Contributions/Fachbeiträge
- Challenging issues and recent R&D activities for enhancing nuclear safety in Korea
- Necessary improvements of the GRS simulation chain for the simulation of light-water-cooled SMRs
- Scaling analysis of core pressure drop in reduced height integral test facility
- Criteria and comparison of thermal stratification between PRHR HX heating and ADS spraying process in IRWST based on a down-scaled experimental facility
- Numerical simulation of bubble growth on and departure from the heated surface by an improved lattice Boltzmann model
- Improvements of interfacial friction and heat transfer models for rectangular narrow channel reflood simulation based on RELAP5
- Proposal of a novel CHF correlation for PWR under low pressure conditions based on stepwise regression method
- Mechanistic prediction of post dryout heat transfer and rewetting
- Investigation of condensation process at COSMEA test facility with ATHLET code
- Research on thermal-hydraulic behavior in the spent fuel pool using a full-height experimental facility
- Experimental investigation on the distribution of spray water in a spent fuel-assembly simulator
- Wet resuspension modelling and validation
- Analysis code development for the direct reactor auxiliary cooling system of the pool-type sodium-cooled fast reactor
- Comparison of heat transfer models with databank of supercritical fluid
- Blankets – key element of a fusion reactor – functions, design and present state of development
- Preliminary steady and transient analysis for the CFETR helium cooled solid blanket system with RELAP
- A methodology for thermo-mechanical assessment of in-box LOCA events on fusion blankets and its application to EU DEMO HCPB breeding blanket