Startseite Investigation of condensation process at COSMEA test facility with ATHLET code
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of condensation process at COSMEA test facility with ATHLET code

  • Y. Zhang , T. Geißler , S. Leyer und U. Hampel
Veröffentlicht/Copyright: 8. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Safety is an essential topic in the development process of nuclear power plant. Several Generation III and III+ reactor designs contain passive safety system to control accident without external power. An example is the Emergency Condenser (EC) of the KERENA reactor design. The EC removes heat from the Reactor Pressure Vessel in the case of design accidents. The experimental facility COSMEA at Helmhotz Zentrum Dresden Rossendorf (HZDR) was set up to investigate the flow morphology and heat transfer structure of condensation inside a slightly inclined tube. In this paper, the condensation process in COSMEA was simulated with the thermal hydraulic system codes ATHLET. The performance of the ATHLET heat transfer models were identified. The simulation results were compared against the experiments. The heat flux, condensation rate and temperature of cooling water during the condensation was analyzed.

Kurzfassung

Sicherheit ist ein wesentliches Thema im Entwicklungsprozess von Kernkraftwerken. Mehrere Reaktortypen der Generation III und III+ enthalten ein passives Sicherheitssystem zur Unfallkontrolle ohne externe Stromversorgung. Ein Beispiel ist der Notkondensator (EC) des KERENA-Reaktorkonzeptes. Der EC entzieht dem Reaktordruckbehälter bei Störfällen Wärme. Die Versuchsanlage COSMEA am Helmholtz Zentrum Dresden Rossendorf (HZDR) wurde eingerichtet, um die Strömungsmorphologie und die Wärmeübertragungsstruktur der Kondensation in einem leicht geneigten Rohr zu untersuchen. In diesem Beitrag werden Nachrechnung des Kondensationsprozesses in der Versuchsanlage COSMEA mit den thermohydraulischen Systemcode ATHLET vorgestellt. Die Leistungsfähigkeit der ATHLET Wärmeübertragungsmodelle wurde bestimmt. Die Simulationsergebnisse wurden mit den Experimenten verglichen. Der Wärmefluss, die Kondensationsrate und die Temperatur des Kühlwassers während der Kondensation wurden analysiert.


* E-mail:

References

1 International Atomic Energy Agency: Passive Safety Systems and Natural Circulation in Water Cooler Nuclear Power Plants. IAEA, Vienna, Austria, (2009) 159Suche in Google Scholar

2 Brettschuh, W.: SWR 1000: AREVA's Advanced, Medium-Sized Boilling Water Reactor With Passive Safety Features. Conf. New nuclear power plants technologies, Budapest, March 8, 2007, Vol 3, p. 158Suche in Google Scholar

3 Hicken, E. F.; Jaegers, H.; Schaffrath, A.; Weiß, F. -P.: The NOKO/TOPFLOW facility for natural convection flow. Internationale Zeitschrift fuer Kernenergie47 (2002) 343348Suche in Google Scholar

4 Schaffrath, A.; Hicken, E. F.; Jaegers, H.; Prasser, H. M.: Operation conditions of the emergency condenser of the SWR1000, Nuclear Engineering and Design188 (1999) 30331810.1016/S0029–5493(99)00044-8Suche in Google Scholar

5 Leyer, S.; Wich, M.: The Integral Test Facility Karlstein, Sci. Technol. Nucl. Install., Sep. 2011, Vol. 2012, p. 11210.1155/2012/439374Suche in Google Scholar

6 Hurtado, A.; Leyer, S.; Hampel, U.; Drescher, R.: PANAS Proposal. in PANAS kick off Meeting, Dresden, Germany, June, 2015.Suche in Google Scholar

7 Geißler, T.; Beyer, M.; Hampel, U.; Prasser, H.; Leyer, S.; Walther, M.: Experimental and numerical investigation of flow structure and heat transfer during high pressure condensation in a declined pipe at COSMEA facility. 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, USA, August 30–September 4, 2015Suche in Google Scholar

8 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 – Cycle A User's Manual. Vol. 1 (2012)Suche in Google Scholar

9 Chato, J. C.: Laminar condensation inside horizontal tube. ASHARE trans 4 (1962) 5260Suche in Google Scholar

Received: 2017-12-05
Published Online: 2018-06-08
Published in Print: 2018-06-18

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. 2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology
  5. Technical Contributions/Fachbeiträge
  6. Challenging issues and recent R&D activities for enhancing nuclear safety in Korea
  7. Necessary improvements of the GRS simulation chain for the simulation of light-water-cooled SMRs
  8. Scaling analysis of core pressure drop in reduced height integral test facility
  9. Criteria and comparison of thermal stratification between PRHR HX heating and ADS spraying process in IRWST based on a down-scaled experimental facility
  10. Numerical simulation of bubble growth on and departure from the heated surface by an improved lattice Boltzmann model
  11. Improvements of interfacial friction and heat transfer models for rectangular narrow channel reflood simulation based on RELAP5
  12. Proposal of a novel CHF correlation for PWR under low pressure conditions based on stepwise regression method
  13. Mechanistic prediction of post dryout heat transfer and rewetting
  14. Investigation of condensation process at COSMEA test facility with ATHLET code
  15. Research on thermal-hydraulic behavior in the spent fuel pool using a full-height experimental facility
  16. Experimental investigation on the distribution of spray water in a spent fuel-assembly simulator
  17. Wet resuspension modelling and validation
  18. Analysis code development for the direct reactor auxiliary cooling system of the pool-type sodium-cooled fast reactor
  19. Comparison of heat transfer models with databank of supercritical fluid
  20. Blankets – key element of a fusion reactor – functions, design and present state of development
  21. Preliminary steady and transient analysis for the CFETR helium cooled solid blanket system with RELAP
  22. A methodology for thermo-mechanical assessment of in-box LOCA events on fusion blankets and its application to EU DEMO HCPB breeding blanket
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110862/html
Button zum nach oben scrollen