Startseite ANDREA 2.2 and 2.3 – Advances in modelling of VVER cores
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

ANDREA 2.2 and 2.3 – Advances in modelling of VVER cores

  • F. Havluj , J. Hejzlar , R. Vocka und J. Vysoudil
Veröffentlicht/Copyright: 18. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In 2016 a new version of code ANDREA for core design and reload safety analysis of VVER reactors has been released. The new code version includes several major improvements. The first of them is a seamless incorporation of short time kinetics calculations (without temperature feedback) into the code. This new feature accompanied by the possibility of excore detector signal predictions enables precise interpretation of dynamic measurements of control assembly weight during the reactor startup. Second important enhancement resides in new flexible format of cross section libraries and in new fuel temperature model based on results of TRANSURANUS fuel performance code. The new code version has been thoroughly tested and validated for both VVER440 and VVER-1000 reactors. Furthermore for the new version 2.3 which is to be released shortly we have implemented the possibility of fluent control assemblies’ motion and of non-equidistant axial nodalization schemes in VVER-440 calculations.

Kurzfassung

Im Jahr 2016 wurde eine neue Version des Programms ANDREA zur Berechnung des Kerndesigns und zur Durchführung von Sicherheitsanalysen von WWER Reaktoren freigegeben. Diese neue Codeversion enthält mehrere wesentliche Verbesserungen. Die erste ist eine nahtlose Einbindung von Kurzzeit-Kinetik-Berechnungen (ohne Berücksichtigung von Temperaturrückwirkungen). Dies und das neue Feature, ex-Core-Detektorsignale zu berechnen, ermöglichen eine präzise Interpretation der dynamischen Messungen der Reaktivität der Regelstäbe während des Reaktorstarts. Zweite weitere wichtige Erweiterungen sind das nun flexible Format der Querschnittsbibliotheken und das neue Modell zur Berechnung der Brennstofftemperatur, das auf Ergebnissen des Brennstabcodes TRANSURANUS beruht. Die neue Codeversion wurde für WWER-440 und WWER-1000 Reaktoren sorgfältig verifiziert und validiert. In der neuen Version 2.3, die in Kürze freigegeben werden soll, wurden Modelle zur Berücksichtigung fließender Regelstabbewegungen und nicht-äquidistanter axialer Nodalisierungsschemata in WWER-440-Berechnungen umgesetzt.


* E-mail:

References

1 Chao, Y. A.; Tsoulfanidis, N.: Conformal mapping and hexagonal nodal methods – i: Mathematical foundation. Nuclear Science and Engineering121 (1995) 202209Suche in Google Scholar

2 Havluj, F.; Vocka, R.: Quadriga – general and powerfull lattice code calculation framework. In Proceedings ICAPP 2015. San Francisco, USA, 2016 27091622Suche in Google Scholar

3 Lawrence, R. D.: Progress in nodal methods for the solution of the neutron diffusion and transport equations. Progress in Nuclear Energy17 (1986) 27130110.1016/0149-1970(86)90034-XSuche in Google Scholar

4 Van Uffelen, P.: Modeling of nuclear fuel behavior. Technical Report Report EUR 22321 EN, European Commission, Publications Office, JRC Publications, 2006Suche in Google Scholar

5 Wemple, C.; Gheorghiu, H.; Stamm'ler, R.; Villarino, E.: Recent advances in the helios-2 lattice physics code. Proceedings PHYSOR 2008. Interlaken, Switzerland, 2008 18686702Suche in Google Scholar

Received: 2017-02-03
Published Online: 2017-08-18
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2016
  7. Technical Contributions/Fachbeiträge
  8. Physical startup tests for VVER-1200 of Novovoronezh NPP: advanced technique and some results
  9. Experimental study of asymmetric boron dilution at VVER-1000 of Kudankulam NPP and its simulation
  10. Study on the impact of transition from 3-batch to 4-batch loading at Loviisa NPP on the long-term decay heat and activity inventory
  11. New engineering safety factors for Loviisa NPP core calculations
  12. Development of fuel cycles with new fuel with 8.9 mm external diameter for VVER-440: Preliminary assessment of operating efficiency
  13. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors
  14. Recalculating the steady state conditions of the V-1000 zero-power facility at Kurchatov Institute using Monte Carlo and nodal diffusion codes
  15. Start-up of a cold loop in a VVER-440, the 7th AER benchmark calculation with HEXTRAN-SMABRE-PORFLO
  16. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  17. Advances in HELIOS2 nuclear data library
  18. ANDREA 2.2 and 2.3 – Advances in modelling of VVER cores
  19. CFD analyses of the rod bowing effect on the subchannel outlet temperature distribution
  20. A methodology for the estimation of the radiological consequences of a Loss of Coolant Accident
  21. Neutron balance as indicator of long-term resource availability in growing nuclear energy system
  22. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system
  23. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core
Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110823/html
Button zum nach oben scrollen