Startseite Development of a hydrogen diffusion gothic model of MARK III-containment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of a hydrogen diffusion gothic model of MARK III-containment

  • H. Zhen-Yu , H. Yu-Kai Huang , H. Wen-Sheng , Yen-Shu Chen und P. Bau-Shei
Veröffentlicht/Copyright: 26. Juni 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The accident that occurred at the Fukushima Daiichi Nuclear Power Plant is a reminder of the danger of hydrogen explosion within a reactor building. Sufficiently high hydrogen concentration may cause an explosion that could damage the structure, resulting in the release of radioisotopes into the environment. In the first part of this study, a gas diffusion experiment was performed, in which helium was used as the working fluid. An analytical model was also developed using the GOTHIC code and the model predictions of the helium distribution were found to be in good agreement with the experimentally measured data. In the second part of the study, a model of the Mark III containment of the Kuosheng Plant in Taiwan was developed, and was applied to a long-term station blackout (SBO) accident similar to that of the Fukushima plant. The hydrogen generation was calculated using the Modular Accident Analysis Program and was used as the boundary condition for the GOTHIC containment model. The simulation results revealed that the hydrogen concentration at the first floor of the wetwell in the containment reached 4% 9.7 h after the accident. This indicated the possibility of dangerous conditions inside the containment. Although active hydrogen ignitors are already installed in the Kuosheng plant, the findings of this study indicate that it may be necessary to add passive recombiners to prolong an SBO event.

Kurzfassung

Der Unfall im Kernkraftwerk Fukushima Daiichi ist eine Erinnerung an die Gefahren einer Wasserstoffexplosion im Innern eines Reaktorgebäudes. Eine ausreichend hohe Wasserstoffkonzentration kann eine Explosion bewirken, die die Gebäudestruktur beschädigt und zu einer Freisetzung von Radionukliden in die Umwelt führt. Im ersten Teil dieser Studie wurde ein Gasdiffusionsexperiment durchgeführt bei dem Helium als Arbeitsmedium verwendet wurde. Ein analytisches Modell wurde mit Hilfe des GOTHIC-Code entwickelt und die Modellvorhersagen der Heliumverteilung befanden sich in guter Übereinstimmung mit den experimentell gemessenen Daten. Im zweiten Teil der Studie wurde ein Model des Mark III-Containments des Kuosheng-Kernkraftwerks in Taiwan entwickelt und auf einen Langzeitausfallunfall (SBO) ähnlich dem in der Fukushima Anlage angewendet. Die Wasserstofferzeugung wurde mit Hilfe des Modular Accident Analysis-Programms berechnet und als Randbedingung für das GOTHIC-Containment-Modell verwendet. Die Simulationsergebnissse zeigen, dass die Wasserstoffkonzentration im Containment 9.7 h nach dem Unfall 4% erreicht. Dies weist auf die Möglichkeit gefährlicher Bedingungen im Containment hin. Obwohl bereits aktive Wasserstoff-Zündeinrichtungen in der Kuosheng-Anlage installiert sind, zeigen die Ergebnisse dieser Studie, dass es nötig sein könnte zusätzlich passive Rekombinatoren zu installieren.


* Corresponding author: E-mail:

References

1 Andreani, M.; Paladinoa, D.; Georgeb, T.: Simulation of basic gas mixing tests with condensation in the PANDA facility using the GOTHIC code. Nuclear Engineering and Design240 (2010) 1528154710.1016/j.nucengdes.2010.02.021Suche in Google Scholar

2 Andreani, M.; Putz, F.; Dury, T. V.; Gjerloev, C.; Smith, B. L.: On the application of field codes to the analysis of gas mixing in large volumes: case studies using CFX and GOTHIC. Annals of Nuclear Energy30 (2003) 68571410.1016/S0306-4549(02)00113-5Suche in Google Scholar

3 Yu-Kai, H.; Zhen-Yu, H.; Yuh-Ming, F.; Chun-Kuan, S.; Bau-Shi, P.: Gas Diffusion Simulated by GOTHIC Code in H-Shape Tube. 2013 ANS Annual Meeting Atlanta, Georgia, June 16–20, 2013Suche in Google Scholar

4 Electric Power Research Institute: GOTHIC: Containment Analysis Package User Manual, version 7.2a. NAI 8907-02 Rev.17, January 2006Suche in Google Scholar

5 Electric Power Research Institute: GOTHIC: Containment Analysis Package Technical Manual: version 7.2a. NAI 8907-06 Rev.16, January 2006Suche in Google Scholar

6 Electric Power Research Institute: GOTHIC: Containment Analysis Package Qualification Report. version 7.2a. NAI 8907-09 Rev.9, January 2006Suche in Google Scholar

7 Taiwan Power Company: Kuosheng Nuclear Power Station Unit Nos. 1&2, P&I Diagram High Pressure Core Spray System. Drawing M-24, Rev. 29Suche in Google Scholar

8 Taiwan Power Company: Final Safety Analysis Report. Kuosheng Nuclear Power Station Units 1 and 2, Amendment No. 12, December 2001Suche in Google Scholar

9 Taiwan Power Company: Kuosheng Nuclear Power Station Unit Nos. 1&2, P&I Diagram Residual Heat Removal System. Drawing M-22SH1 Rev. 30Suche in Google Scholar

10 EPRI, 2003: MAAP4: Module Accident Analysis Program for LWR Power Plants. Computer Code User’s Manual, May 1994–January 2003Suche in Google Scholar

11 Fauske & Associates Inc.: MAAP4-Modular Accident Analysis program for LWR power plants. 1994Suche in Google Scholar

Received: 2015-01-21
Published Online: 2015-06-26
Published in Print: 2015-07-25

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110473/html?lang=de
Button zum nach oben scrollen