Startseite Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET

  • A. Hoffmann , B. Merk , T. Hirsch und R. Pitz-Paal
Veröffentlicht/Copyright: 24. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present feasibility study the system code ATHLET, which originates from nuclear engineering, is applied to a parabolic trough test facility. A model of the DISS (DIrect Solar Steam) test facility at Plataforma Solar de Almería in Spain is assembled and the results of the simulations are compared to measured data and the simulation results of the Modelica library “DissDyn”. A profound comparison between ATHLET Mod 3.0 Cycle A and the “DissDyn” library reveals the capabilities of these codes. The calculated mass and energy balance in the ATHLET simulations are in good agreement with the results of the measurements and confirm the applicability for thermodynamic simulations of DSG processes in principle. Supplementary, the capabilities of the 6-equation model with transient momentum balances in ATHLET are used to study the slip between liquid and gas phases and to investigate pressure wave oscillations after a sudden valve closure.

Kurzfassung

Die vorliegende Machbarkeitsstudie wendet den Systemcode ATHLET aus dem Fachgebiet der Nukleartechnik auf eine Versuchsanlage mit Parabolrinnenkollektoren an. Es wird ein Modell der DISS (DIrect Solar Steam) Versuchsanlage an der Plataforma Solar de Almería erstellt und die Simulationsergebnisse mit den Messdaten sowie den Simulationsergebnissen der Modelica Bibliothek “DissDyn” verglichen. Ein Vergleich zwischen ATHLET Mod 3.0 Cycle A und der “DissDyn” Bibliothek erörtert die Modellfähigkeiten der beiden Simulationswerkzeuge. Die berechneten Massen- und Energiebilanzen in ATHLET stimmen gut mit den Messergebnissen überein und bestätigen die prinzipielle Anwendbarkeit zur Simulation der Thermofluiddynamik eines DSG Prozesses. Ergänzend werden die Fähigkeiten des in ATHLET implementierten 6-Gleichungsmodells und die der zeitabhängigen Impulsbilanzen genutzt, um den Schlupf zwischen den Phasen und Druckwellenoszillationen nach dem plötzlichen Schließen eines Ventiles zu untersuchen.

References

1 Zarza, E.; Weyers, H. D.; Eck, M.; Hennecke, K.: The DISS project: Direct steam generation in parabolic troughs operation and maintenance experience update on project status, 2001. Proceedings of Solar Forum 2001 Solar Energy: The Power to Choose, Washington D.C.Suche in Google Scholar

2 Feldhoff, J. F.; Benitez, D.; Eck, M.; Riffelmann, K.-J.: Economic potential of solar thermal power plants with direct steam generation compared with HTF plants. Journal of Solar Energy Engineering132 (2010), 041001.1041001.9Suche in Google Scholar

3 Zarza, E.; Valenzuela, L.; León, J.; Hennecke, K.; Eck, M.; Weyers, H. D.; Eickhoff, M.: Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project. Journal of Energy29 (2004) 63564410.1016/S0360-5442(03)00172-5Suche in Google Scholar

4 Eck, M.; Steinmann, W.: Direct steam generation in parabolic troughs: first results of the DISS project. Proceedings of Solar Forum 2001: Solar Energy: The Power to Choose, Washington D.C., 2001Suche in Google Scholar

5 Lippke, F.: Direct steam generation in parabolic trough solar power plants: numerical investigation of the transients and the control of a once-through system. Journal of Solar Energy Engineering118 (1996) 91410.1115/1.2847958Suche in Google Scholar

6 Odeh, S. D.: Direct Steam Generation Collectors for Solar Electric Generation Systems. PhD thesis, University of New South Wales, 1999Suche in Google Scholar

7 Steinmann, W.-D.: Dynamik solarer Dampferzeuger. Fortschritt-Berichte VDI, Reihe 6, Nr. 467, 2001Suche in Google Scholar

8 Hirsch, T.; Steinmann, W.; Eck, M.: Simulation of transient two-phase flow in parabolic trough collectors using Modelica. In Proceedings of the 4th International Modelica Conference (2005), pp. 403412. March, 7–8, Hamburg, GermanySuche in Google Scholar

9 Lobón, D.; Baglietto, E.; Valenzuela, L.; Zarza, E.: Modeling direct steam generation in solar collectors with multiphase CFD. Applied Energy113 (2014), 1338134810.1016/j.apenergy.2013.08.046Suche in Google Scholar

10 Pye, J. D.: System modelling of the compact linear fresnel reflector. PhD thesis, University of New South Wales, 2008Suche in Google Scholar

11 Goebel, O.: Wärmeübergang in Absorberrohren von Parabolrinnen-Solarkraftwerken. Fortschritt-Berichte VDI, Reihe 6, Nr. 402, 1998Suche in Google Scholar

12 Moya, S. L.; Valenzuela, L.; Zarza, E.: Numerical study of the thermal-hydraulic behavior of water-steam flow in the absorber tube of the DISS system using RELAP. Concentrating solar power and chemical energy systems (SolarPACES), Granada, Spain, 2011Suche in Google Scholar

13 You, C.; Zhang, W.; Yin, Z.: Modeling of fluid flow and heat transfer in trough solar collector. Applied Thermal Engineering54 (2013) 24725410.1016/j.applthermaleng.2013.01.046Suche in Google Scholar

14 Lippke, F.: Numerische Simulation der Absorberdynamik von Parabolrinnen-Solarkraftwerken mit direkter Dampferzeugung. Fortschritt-Bericht VDI, Reihe 6, Nr. 307, 1994Suche in Google Scholar

15 Hirsch, T.: Dynamische Systemsimulation und Auslegung des Abscheidesystems für die solare Direktverdampfung in Parabolrinnenkollektoren. Fortschritt-Berichte VDI, Reihe 6, Nr. 535, 2005Suche in Google Scholar

16 Odeh, S. D.; Behnia, M.; Morrison, G. L.: Hydrodynamic analysis of direct steam generation solar collectors. Journal of Solar Energy Engineering – Transactions of the ASME122 (2000) 142210.1115/1.556273Suche in Google Scholar

17 Dynasim AB : Dymola User Manual, version 5. 3a ed.Lund (Sweden), 2004Suche in Google Scholar

18 Müller-Steinhagen, H.; Heck, K. A.: simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing20 (1986), 29730810.1016/0255-2701(86)80008-3Suche in Google Scholar

19 Winterton, R. H. S.: Where did the Dittus and Boelter equation come from?International Journal of Heat and Mass Transfer41 (1998) 80981010.1016/S0017-9310(97)00177-4Suche in Google Scholar

20 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 Cylce A – Models and Methods. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, November 2012Suche in Google Scholar

21 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 Cycle A – User’s Manual. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, November 2012Suche in Google Scholar

22 Lerchl, G.; Austregesilo, H.; Glaeser, H.; Hrubisko, M.; Luther, W.: ATHLET Mod 3.0 Cycle A – Validation. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, September 2012Suche in Google Scholar

23 Collier, J. G.; Thome, J. R.: Convective boiling and condensation. Oxford University Press, 1996Suche in Google Scholar

24 Martinelli, R. C.; Nelson, D. B.: Prediction of pressure drop during forced-circulation boiling of water. Transactions of the American Society of Mechanical Engineers70 (1948) 692702Suche in Google Scholar

25 Chisholm, D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer16 (1973) 34735810.1016/0017-9310(73)90063-XSuche in Google Scholar

26 Müller, W. C.: Fast and accurate water and steam properties programs for two-phase flow calculations. Nuclear Engineering and Design149 (1994) 44945810.1016/0029-5493(94)90310-7Suche in Google Scholar

27 Friedel, L.: Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow. Drei R International 18, 7 (1979) 485491Suche in Google Scholar

28 Beattie, D.H.: A note on the calculation of two-phase pressure losses. Nuclear Engineering and Design25 (1973) 395402Suche in Google Scholar

29 Kastner, W.; Kefer, V.; Köhler, W.; Krätzer, W.: Wärmeübergang und Druckverlust in einseitig beheizten, geneigten und innenberippten Rohren. Tech. rep., Forschungsprogramm Energietechnik, Schlussbericht, Förderungsvorhaben BMFT-03E-6361-A, 1988Suche in Google Scholar

30 Mayinger, F.: Zweiphasen-Rohrströmung. CZ-Chemie-Technik1 (1972), 712Suche in Google Scholar

31 Schäfer, F.: Investigations of natural circulation instabilities in VVER-type reactors at LOCA conditions. In 4th International Symposium on Safety and Reliability Systems of PWRs/VVER (2001), pp. 94100. May 14–17, Brno, Czech RepublicSuche in Google Scholar

32 Schäfer, F.; Manera, A.: Investigation of flashing-induced instabilities at CIRCUS test facility with the code ATHLET. International Journal of Nuclear Energy Science and Technology2 (2006) 209218Suche in Google Scholar

33 Paladino, D.; Huggenberger, M.; Schäfer, F.: Natural circulation characteristics at low pressure conditions – PANDA experiments and ATHLET simulations, 2008. Article ID 874969Suche in Google Scholar

34 Bouré, J. A.; Bergles, A. E.; Tong, L. S.: Review of two-phase flow instability. Nuclear Engineering and Design25 (1973) 16519210.1016/0029-5493(73)90043-5Suche in Google Scholar

35 DLR: http://www.dlr.de/media/desktopdefault.aspx/tabid-4987/8424_read-20582. DLR (CC-BY 3.0), accessed 15 November 2013Suche in Google Scholar

Received: 2013-12-12
Published Online: 2014-06-24
Published in Print: 2014-06-26

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110419/html?lang=de
Button zum nach oben scrollen