Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET
-
A. Hoffmann
, B. Merk , T. Hirsch und R. Pitz-Paal
Abstract
In the present feasibility study the system code ATHLET, which originates from nuclear engineering, is applied to a parabolic trough test facility. A model of the DISS (DIrect Solar Steam) test facility at Plataforma Solar de Almería in Spain is assembled and the results of the simulations are compared to measured data and the simulation results of the Modelica library “DissDyn”. A profound comparison between ATHLET Mod 3.0 Cycle A and the “DissDyn” library reveals the capabilities of these codes. The calculated mass and energy balance in the ATHLET simulations are in good agreement with the results of the measurements and confirm the applicability for thermodynamic simulations of DSG processes in principle. Supplementary, the capabilities of the 6-equation model with transient momentum balances in ATHLET are used to study the slip between liquid and gas phases and to investigate pressure wave oscillations after a sudden valve closure.
Kurzfassung
Die vorliegende Machbarkeitsstudie wendet den Systemcode ATHLET aus dem Fachgebiet der Nukleartechnik auf eine Versuchsanlage mit Parabolrinnenkollektoren an. Es wird ein Modell der DISS (DIrect Solar Steam) Versuchsanlage an der Plataforma Solar de Almería erstellt und die Simulationsergebnisse mit den Messdaten sowie den Simulationsergebnissen der Modelica Bibliothek “DissDyn” verglichen. Ein Vergleich zwischen ATHLET Mod 3.0 Cycle A und der “DissDyn” Bibliothek erörtert die Modellfähigkeiten der beiden Simulationswerkzeuge. Die berechneten Massen- und Energiebilanzen in ATHLET stimmen gut mit den Messergebnissen überein und bestätigen die prinzipielle Anwendbarkeit zur Simulation der Thermofluiddynamik eines DSG Prozesses. Ergänzend werden die Fähigkeiten des in ATHLET implementierten 6-Gleichungsmodells und die der zeitabhängigen Impulsbilanzen genutzt, um den Schlupf zwischen den Phasen und Druckwellenoszillationen nach dem plötzlichen Schließen eines Ventiles zu untersuchen.
References
1 Zarza, E.; Weyers, H. D.; Eck, M.; Hennecke, K.: The DISS project: Direct steam generation in parabolic troughs operation and maintenance experience update on project status, 2001. Proceedings of Solar Forum 2001 Solar Energy: The Power to Choose, Washington D.C.Suche in Google Scholar
2 Feldhoff, J. F.; Benitez, D.; Eck, M.; Riffelmann, K.-J.: Economic potential of solar thermal power plants with direct steam generation compared with HTF plants. Journal of Solar Energy Engineering132 (2010), 041001.1–041001.9Suche in Google Scholar
3 Zarza, E.; Valenzuela, L.; León, J.; Hennecke, K.; Eck, M.; Weyers, H. D.; Eickhoff, M.: Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project. Journal of Energy29 (2004) 635–64410.1016/S0360-5442(03)00172-5Suche in Google Scholar
4 Eck, M.; Steinmann, W.: Direct steam generation in parabolic troughs: first results of the DISS project. Proceedings of Solar Forum 2001: Solar Energy: The Power to Choose, Washington D.C., 2001Suche in Google Scholar
5 Lippke, F.: Direct steam generation in parabolic trough solar power plants: numerical investigation of the transients and the control of a once-through system. Journal of Solar Energy Engineering118 (1996) 9–1410.1115/1.2847958Suche in Google Scholar
6 Odeh, S. D.: Direct Steam Generation Collectors for Solar Electric Generation Systems. PhD thesis, University of New South Wales, 1999Suche in Google Scholar
7 Steinmann, W.-D.: Dynamik solarer Dampferzeuger. Fortschritt-Berichte VDI, Reihe 6, Nr. 467, 2001Suche in Google Scholar
8 Hirsch, T.; Steinmann, W.; Eck, M.: Simulation of transient two-phase flow in parabolic trough collectors using Modelica. In Proceedings of the 4th International Modelica Conference (2005), pp. 403–412. March, 7–8, Hamburg, GermanySuche in Google Scholar
9 Lobón, D.; Baglietto, E.; Valenzuela, L.; Zarza, E.: Modeling direct steam generation in solar collectors with multiphase CFD. Applied Energy113 (2014), 1338–134810.1016/j.apenergy.2013.08.046Suche in Google Scholar
10 Pye, J. D.: System modelling of the compact linear fresnel reflector. PhD thesis, University of New South Wales, 2008Suche in Google Scholar
11 Goebel, O.: Wärmeübergang in Absorberrohren von Parabolrinnen-Solarkraftwerken. Fortschritt-Berichte VDI, Reihe 6, Nr. 402, 1998Suche in Google Scholar
12 Moya, S. L.; Valenzuela, L.; Zarza, E.: Numerical study of the thermal-hydraulic behavior of water-steam flow in the absorber tube of the DISS system using RELAP. Concentrating solar power and chemical energy systems (SolarPACES), Granada, Spain, 2011Suche in Google Scholar
13 You, C.; Zhang, W.; Yin, Z.: Modeling of fluid flow and heat transfer in trough solar collector. Applied Thermal Engineering54 (2013) 247–25410.1016/j.applthermaleng.2013.01.046Suche in Google Scholar
14 Lippke, F.: Numerische Simulation der Absorberdynamik von Parabolrinnen-Solarkraftwerken mit direkter Dampferzeugung. Fortschritt-Bericht VDI, Reihe 6, Nr. 307, 1994Suche in Google Scholar
15 Hirsch, T.: Dynamische Systemsimulation und Auslegung des Abscheidesystems für die solare Direktverdampfung in Parabolrinnenkollektoren. Fortschritt-Berichte VDI, Reihe 6, Nr. 535, 2005Suche in Google Scholar
16 Odeh, S. D.; Behnia, M.; Morrison, G. L.: Hydrodynamic analysis of direct steam generation solar collectors. Journal of Solar Energy Engineering – Transactions of the ASME122 (2000) 14–2210.1115/1.556273Suche in Google Scholar
17 Dynasim AB : Dymola User Manual, version 5. 3a ed.Lund (Sweden), 2004Suche in Google Scholar
18 Müller-Steinhagen, H.; Heck, K. A.: simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing20 (1986), 297–30810.1016/0255-2701(86)80008-3Suche in Google Scholar
19 Winterton, R. H. S.: Where did the Dittus and Boelter equation come from?International Journal of Heat and Mass Transfer41 (1998) 809–81010.1016/S0017-9310(97)00177-4Suche in Google Scholar
20 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 Cylce A – Models and Methods. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, November 2012Suche in Google Scholar
21 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 Cycle A – User’s Manual. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, November 2012Suche in Google Scholar
22 Lerchl, G.; Austregesilo, H.; Glaeser, H.; Hrubisko, M.; Luther, W.: ATHLET Mod 3.0 Cycle A – Validation. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, September 2012Suche in Google Scholar
23 Collier, J. G.; Thome, J. R.: Convective boiling and condensation. Oxford University Press, 1996Suche in Google Scholar
24 Martinelli, R. C.; Nelson, D. B.: Prediction of pressure drop during forced-circulation boiling of water. Transactions of the American Society of Mechanical Engineers70 (1948) 692–702Suche in Google Scholar
25 Chisholm, D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer16 (1973) 347–35810.1016/0017-9310(73)90063-XSuche in Google Scholar
26 Müller, W. C.: Fast and accurate water and steam properties programs for two-phase flow calculations. Nuclear Engineering and Design149 (1994) 449–45810.1016/0029-5493(94)90310-7Suche in Google Scholar
27 Friedel, L.: Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow. Drei R International 18, 7 (1979) 485–491Suche in Google Scholar
28 Beattie, D.H.: A note on the calculation of two-phase pressure losses. Nuclear Engineering and Design25 (1973) 395–402Suche in Google Scholar
29 Kastner, W.; Kefer, V.; Köhler, W.; Krätzer, W.: Wärmeübergang und Druckverlust in einseitig beheizten, geneigten und innenberippten Rohren. Tech. rep., Forschungsprogramm Energietechnik, Schlussbericht, Förderungsvorhaben BMFT-03E-6361-A, 1988Suche in Google Scholar
30 Mayinger, F.: Zweiphasen-Rohrströmung. CZ-Chemie-Technik1 (1972), 7–12Suche in Google Scholar
31 Schäfer, F.: Investigations of natural circulation instabilities in VVER-type reactors at LOCA conditions. In 4th International Symposium on Safety and Reliability Systems of PWRs/VVER (2001), pp. 94–100. May 14–17, Brno, Czech RepublicSuche in Google Scholar
32 Schäfer, F.; Manera, A.: Investigation of flashing-induced instabilities at CIRCUS test facility with the code ATHLET. International Journal of Nuclear Energy Science and Technology2 (2006) 209–218Suche in Google Scholar
33 Paladino, D.; Huggenberger, M.; Schäfer, F.: Natural circulation characteristics at low pressure conditions – PANDA experiments and ATHLET simulations, 2008. Article ID 874969Suche in Google Scholar
34 Bouré, J. A.; Bergles, A. E.; Tong, L. S.: Review of two-phase flow instability. Nuclear Engineering and Design25 (1973) 165–19210.1016/0029-5493(73)90043-5Suche in Google Scholar
35 DLR: http://www.dlr.de/media/desktopdefault.aspx/tabid-4987/8424_read-20582. DLR (CC-BY 3.0), accessed 15 November 2013Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET
- Measurement of velocity profiles of nanofluids in laminar channel flow using Particle Image Velocimetry
- Prediction of correlation between two-phase natural circulation flows in heated and unheated channels of a parallel channel system – based on electrical analogy
- Investigation of (n,γ) reactions in fissionable fluids in a hybrid reactor system
- In-pile modelling of nuclear fuel element for the MTR type reactors – Part 2
- One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique
- Hamming generalized corrector for reactivity calculation
- Experimental study of flow inversion in MTR upward flow research reactors
- Technical Note
- The effect of burn up on the kinetic parameters for a pressurized water reactor fueled by MOX using MCNPX code
- Diffusion length calculations for one-speed neutrons in a slab with backward, forward and linear anisotropic scattering
- Improvement of passive shielding to reduce background components to determinate radioactivity at low energy gamma rays
- A study of the energy enhancement of electron in radio frequency (RF) linear accelerator of iris loaded waveguards
- Age-dependent effective doses for radionuclides uniformly distributed in air
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET
- Measurement of velocity profiles of nanofluids in laminar channel flow using Particle Image Velocimetry
- Prediction of correlation between two-phase natural circulation flows in heated and unheated channels of a parallel channel system – based on electrical analogy
- Investigation of (n,γ) reactions in fissionable fluids in a hybrid reactor system
- In-pile modelling of nuclear fuel element for the MTR type reactors – Part 2
- One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique
- Hamming generalized corrector for reactivity calculation
- Experimental study of flow inversion in MTR upward flow research reactors
- Technical Note
- The effect of burn up on the kinetic parameters for a pressurized water reactor fueled by MOX using MCNPX code
- Diffusion length calculations for one-speed neutrons in a slab with backward, forward and linear anisotropic scattering
- Improvement of passive shielding to reduce background components to determinate radioactivity at low energy gamma rays
- A study of the energy enhancement of electron in radio frequency (RF) linear accelerator of iris loaded waveguards
- Age-dependent effective doses for radionuclides uniformly distributed in air