Home Technology Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
Article
Licensed
Unlicensed Requires Authentication

Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code

  • S. A. H. Feghhi , Z. Gholamzadeh , Z. Alipoor , M. Joharifard and C. Tenreiro
Published/Copyright: January 8, 2014
Become an author with De Gruyter Brill

Abstract

Due to the reduction of accessible uranium resources as well as waste proliferation issues, researchers are looking for more suitable approaches, such as replacement of uranium as breeding fuels. Among the practical fuel matrixes, the thorium fuel matrix is favored for its naturally abundant and minor actinide proliferation resistance. Monte Carlo computational methods are widely used to successfully simulate neutronic behavior of nuclear reactors. Calculation of some neutronic and dynamic parameters of a 37-assembly simulated research reactor consisting of thorium oxide fuel and 1 minor actinide pin have been carried out in the present work using the MCNPX 2.6 code.

Kurzfassung

Die Verringerung zugänglicher Uranvorräte wie auch Fragen der Weiterverbreitung von radioaktiven Abfällen haben Fachleute nach besseren Ansätzen suchen lassen, wie z.B. der Ersatz von Uran als Brennmaterial. Als praktische Brennstoffmatrix wird Thorium bevorzugt wegen seines natürlichen Vorkommens und weil minore Aktiniden zur Vermeidung der Verbreitung von Kernmaterial beitragen. Die Verwendung von Monte-Carlo-Rechenmethoden ist weit verbreitet bei der erfolgreichen Simulation des neutronsichen Verhaltens von Kernreaktoren. Berechnungen einiger neutronischer und dynamischer Parameter der Brennstoffanordnung eines Forschungsreaktors bestehend aus Thoriumoxid und einem Brennstab aus minoren Aktiniden werden in dieser Arbeit mit Hilfe des MCNPX 2.6 Codes durchgeführt.


* Coressponding author: E-mail:

References

1 M.Mori: Core design analysis supercritical fast reactor. PhD thesis, Univ. of Stuttgart. 2005Search in Google Scholar

2 R.Cywinski: The Thorium energy amplifier association. 2009Search in Google Scholar

3 NATO Advanced research workshop on advanced nuclear systems consuming excess plutonium. 13–16 October, Moscow, Russia, 1996Search in Google Scholar

4 AENS-2004. Americans nuclear energy symposium, Miami beach, Florida, 3–6 October, 2004Search in Google Scholar

5 P. N.Haubenreich; J. R.Engel: Experience with the Molten Salt Reactor Experiment. J. Nucl. Appl. and Tech8 (1970) 11810.13182/NT8-2-118Search in Google Scholar

6 J. M.Kerr; H. M.Jones; C. J.Baroch; E. J.Silk: Performance of ThO/sub 2/-UO/sub 2/fuel in Indian Point I. American ceramic society bulletin59(6) (1980) 606Search in Google Scholar

7 D. R.Connors; S.Milani; J. A.Fest; R.Atherton: Design of the Shipping port Light. 1979Search in Google Scholar

8 I. E.Stamatelatos; F.Tzika: Monte Carlo simulation of Greek research reactor neutron irradiation position using MCNP. Institute of Nuclear Technology and Radiation Protection “NCSR” International Conference on Research Reactors, 200710.1016/j.nimb.2007.04.074Search in Google Scholar

9 D. B.Pelowitz: Users' manual versión of MCNPX2.6.0, LANL, LA-CP-07-1473, 2008Search in Google Scholar

10 M. L.Fensin: Development of the MCNPX depletion capability: A monte carlo depletion method that automates the Coupling between MCNPX and CINDER90 for high fidelity burnup calculations. Florida university, 2008Search in Google Scholar

11 B. El.Bakkari; T. El.Bardouni; O.Merroun; Ch. El.Younoussi; Y.Boulaich; E.Chakir: Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises. J. Annal. Nucl. Energ.36 (2009) 62610.1016/j.anucene.2008.12.025Search in Google Scholar

12 L.Snoj; M.Ravnik: Calculation of Power Density with MCNP in TRIGA Reactor. International Conference, 2006Search in Google Scholar

13 J. K.Shultis; R. E.Faw: An MCNP primer. Dept. of Mechanical and Nuclear Engineering, Kansas State University, copyright (2004–2010)Search in Google Scholar

14 L.Snoj; A.Kavčič; G.Žerovnik:M.Ravnik: Monte Carlo Calculation of Kinetic Parameters for the TRIGA Mark II Research Reactor. Nuclear Energy for New Europe, 2008Search in Google Scholar

15 D.Westlen: Why Faster is Better – On Minor Actinide Transmutation in Hard Neutron Spectra. PhD thesis, Univ. of Stockholm, 2007Search in Google Scholar

Received: 2013-4-7
Published Online: 2014-01-08
Published in Print: 2013-12-19

© 2013, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110366/pdf
Scroll to top button