Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
-
S. A. H. Feghhi
, Z. Gholamzadeh , Z. Alipoor , M. Joharifard and C. Tenreiro
Abstract
Due to the reduction of accessible uranium resources as well as waste proliferation issues, researchers are looking for more suitable approaches, such as replacement of uranium as breeding fuels. Among the practical fuel matrixes, the thorium fuel matrix is favored for its naturally abundant and minor actinide proliferation resistance. Monte Carlo computational methods are widely used to successfully simulate neutronic behavior of nuclear reactors. Calculation of some neutronic and dynamic parameters of a 37-assembly simulated research reactor consisting of thorium oxide fuel and 1 minor actinide pin have been carried out in the present work using the MCNPX 2.6 code.
Kurzfassung
Die Verringerung zugänglicher Uranvorräte wie auch Fragen der Weiterverbreitung von radioaktiven Abfällen haben Fachleute nach besseren Ansätzen suchen lassen, wie z.B. der Ersatz von Uran als Brennmaterial. Als praktische Brennstoffmatrix wird Thorium bevorzugt wegen seines natürlichen Vorkommens und weil minore Aktiniden zur Vermeidung der Verbreitung von Kernmaterial beitragen. Die Verwendung von Monte-Carlo-Rechenmethoden ist weit verbreitet bei der erfolgreichen Simulation des neutronsichen Verhaltens von Kernreaktoren. Berechnungen einiger neutronischer und dynamischer Parameter der Brennstoffanordnung eines Forschungsreaktors bestehend aus Thoriumoxid und einem Brennstab aus minoren Aktiniden werden in dieser Arbeit mit Hilfe des MCNPX 2.6 Codes durchgeführt.
References
1 M.Mori: Core design analysis supercritical fast reactor. PhD thesis, Univ. of Stuttgart. 2005Search in Google Scholar
2 R.Cywinski: The Thorium energy amplifier association. 2009Search in Google Scholar
3 NATO Advanced research workshop on advanced nuclear systems consuming excess plutonium. 13–16 October, Moscow, Russia, 1996Search in Google Scholar
4 AENS-2004. Americans nuclear energy symposium, Miami beach, Florida, 3–6 October, 2004Search in Google Scholar
5 P. N.Haubenreich; J. R.Engel: Experience with the Molten Salt Reactor Experiment. J. Nucl. Appl. and Tech8 (1970) 11810.13182/NT8-2-118Search in Google Scholar
6 J. M.Kerr; H. M.Jones; C. J.Baroch; E. J.Silk: Performance of ThO/sub 2/-UO/sub 2/fuel in Indian Point I. American ceramic society bulletin59(6) (1980) 606Search in Google Scholar
7 D. R.Connors; S.Milani; J. A.Fest; R.Atherton: Design of the Shipping port Light. 1979Search in Google Scholar
8 I. E.Stamatelatos; F.Tzika: Monte Carlo simulation of Greek research reactor neutron irradiation position using MCNP. Institute of Nuclear Technology and Radiation Protection “NCSR” International Conference on Research Reactors, 200710.1016/j.nimb.2007.04.074Search in Google Scholar
9 D. B.Pelowitz: Users' manual versión of MCNPX2.6.0, LANL, LA-CP-07-1473, 2008Search in Google Scholar
10 M. L.Fensin: Development of the MCNPX depletion capability: A monte carlo depletion method that automates the Coupling between MCNPX and CINDER90 for high fidelity burnup calculations. Florida university, 2008Search in Google Scholar
11 B. El.Bakkari; T. El.Bardouni; O.Merroun; Ch. El.Younoussi; Y.Boulaich; E.Chakir: Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises. J. Annal. Nucl. Energ.36 (2009) 62610.1016/j.anucene.2008.12.025Search in Google Scholar
12 L.Snoj; M.Ravnik: Calculation of Power Density with MCNP in TRIGA Reactor. International Conference, 2006Search in Google Scholar
13 J. K.Shultis; R. E.Faw: An MCNP primer. Dept. of Mechanical and Nuclear Engineering, Kansas State University, copyright (2004–2010)Search in Google Scholar
14 L.Snoj; A.Kavčič; G.Žerovnik:M.Ravnik: Monte Carlo Calculation of Kinetic Parameters for the TRIGA Mark II Research Reactor. Nuclear Energy for New Europe, 2008Search in Google Scholar
15 D.Westlen: Why Faster is Better – On Minor Actinide Transmutation in Hard Neutron Spectra. PhD thesis, Univ. of Stockholm, 2007Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors: a review – Part II: R&D necessities and development across the world
- Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
- Calculation of excitation functions for the production of Cu and Co medical isotopes
- Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
- Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
- Steam drum level control studies of a natural circulation multi loop reactor
- Analyses in regulatory practice
- Technical Notes/Technische Mitteilungen
- Installation and measurement capacity of 3 × 592 GBq 241Am–Be neutron irradiation cell
- Calculation of the critical thickness for one-speed neutrons in a reflected slab with backward and forward scattering using modified TN method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors: a review – Part II: R&D necessities and development across the world
- Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
- Calculation of excitation functions for the production of Cu and Co medical isotopes
- Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
- Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
- Steam drum level control studies of a natural circulation multi loop reactor
- Analyses in regulatory practice
- Technical Notes/Technische Mitteilungen
- Installation and measurement capacity of 3 × 592 GBq 241Am–Be neutron irradiation cell
- Calculation of the critical thickness for one-speed neutrons in a reflected slab with backward and forward scattering using modified TN method