Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
-
P. Khubchandani
, A. Srivastava and H. G. Lele
Abstract
For analyzing the failure probability of the system, a model of the system was developed in best estimate T–H code RELAP5/Mod3.3. The parameters affecting the system performance were identified, their range and distribution was determined. Feasibility of various methods for calculating functional reliability was analyzed. The response surface method was selected. A response surface was constructed for the entire range of parameters for the model developed using Monte Carlo method. A large number of samples of the input parameters was generated, taking into account their individual distributions. They were classified as success/failure based on their position with respect to the failure surface. The ratio of the failed samples to the successful samples gives us the failure probability. An attempt was also made to integrate the functional failure probability with the component failure probability of the system to get an overall failure probability of the system.
Kurzfassung
Zur Analyse der Fehleranfälligkeit des Systems wurde ein Modell entwickelt auf der Grundlage des Best Estimate T–H code RELAP5/Mod3.3. Die Parameter, die die Leistungsfähigkeit des Systems beeinflussen, wurden identifiziert und ihre Reichweite und Verteilung wurde bestimmt. Die Durchführbarkeit verschiedener Methoden zu Berechnung der funktionalen Zuverlässigkeit wurde analysiert und die Response-Surface-Methode wurde ausgewählt. Eine Antwortfläche wurde mit Hilfe der Monte-Carlo-Methode für den gesamten Parameterbereich konstruiert. Eine große Anzahl von Inputparametern wurde erzeugt, unter Berücksichtigung ihrer individuellen Verteilungen. Sie wurden als Erfolg/Misserfolg klassifiziert je nach ihrer Position in Bezug auf die Fehlerfläche. Das Verhältnis zwischen erfolgreichen Proben und Fehlerproben ergibt die Fehlerwahrscheinlichkeit. Es wurde versucht, die funktionale Fehlerwahrscheinlichkeit in die Komponentenfehlerwahrscheinlichkeit des Systems zu integrieren, um so die Gesamtfehlerwahrscheinlichkeit des Systems zu erhalten.
References
1 IAEA. Safety related terms for advanced nuclear plant. IAEA TECDOC-626, 1991.Search in Google Scholar
2 S. K.Ahn; I. S.Kim; K. M.Oh: Deterministic and risk-informed approaches for safety analysis of advanced reactors: Part I. Deterministic approaches. Reliability Engineering and System Safety95 (2010) 451–458Search in Google Scholar
3 A. K.Nayak; M. R.Gartia; A.Antony; G.Vinod; R. K.Sinha: Passive system reliability analysis using the APSRA methodology. Nuclear Engineering and Design238 (2008) 1430–144010.1016/j.nucengdes.2007.11.005Search in Google Scholar
4 L.Pagani; G. E.Apostolakis; P.Hejzlar: The impact of uncertainties on the performance of passive systems. Nuclear Technology149 (2005) 129–140Search in Google Scholar
5 G. E.Apostolakis: The concept of probability in safety assessment of techno-logical systems. Science250 (1990) 135910.1126/science.2255906Search in Google Scholar PubMed
6 L.Burgazzi: Reliability evaluation of passive systems through functional reli-ability assessment. Nuclear Technology144 (2003) 14510.13182/NT144-145Search in Google Scholar
7 H. S.Aybar; T.Aldemir: Dynamic probabilistic reliability and safety assess-ment: an application to IS-BWR. In: Proceedings of the Seventh International Conference on Nuclear Engineering, Tokio, Japan, 1999Search in Google Scholar
8 Y. J.Chung; S. W.Lee; S. H.Kim; K. K.Kim: Passive cooldown performance of a 65 MW integral reactor238 (2008) 1681–1689Search in Google Scholar
9 L.Burgazzi: Thermal-hydraulic passive system reliability-based design approach. Reliab Eng Syst Saf92 (2007) 1250–125710.1016/j.ress.2006.07.008Search in Google Scholar
10 L.Burgazzi: Addressing the uncertainties related to passive system reliability. Progress in Nuclear Energy49 (2007) 93–10210.1016/j.pnucene.2006.10.003Search in Google Scholar
11 L.Burgazzi: Passive system reliability analysis: a study on the isolation con-denser. Nuclear Technology139 (2002) 3–9Search in Google Scholar
12 A. K.Nayak; V.Jain; M. R.Gartia; H.Prasad; A.Anthony; S. K.Bhatia; R. K.Sinha: Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology. Reliability Engineering and System Safety94 (2009) 1064–107510.1016/j.ress.2008.12.002Search in Google Scholar
13 T. H.Woo; U. C.Lee: Dynamical reliability of the passive system in the very high temperature gas cooled reactor. Annals of Nuclear Energy36 (2009) 1299–130610.1016/j.anucene.2009.07.011Search in Google Scholar
14 F.D'Auria; F.Bianchi; L.Burgazzi; M. E.Ricotti: The REPAS study: reliability evaluation of passive safety systems In: Proceedings of the 10th International Conference on Nuclear Engineering ICONE 10-22414, Arlington, VA, USA, April 14–18, 2002Search in Google Scholar
15 M.Marquès; J. F.Pignatel; P.Saignes; F.D'Auria; L.Burgazzi; C.Müller; R.Bolado-Lavin; C.Kirchsteiger; V.La Lumia; I.Ivanov: Methodology for the reliability evaluation of a passive system and its integration into a probabilistic safety assessment. Nuclear Engineering and Design235 (2005) 2612–2631Search in Google Scholar
16 L.Pagani; G. E.Apostolakis; P.Hejzlar: The impact of uncertainties on the performance of passive systems. Nuclear Technology149 (2005) 129–140Search in Google Scholar
17 T. S.Mathews; M.Ramakrishnan; U.Parthasarathy; A.John Arul; C.Senthil Kumar: Functional reliability analysis of safety grade decay heat removal system of Indian 500 MWe PFBR. Nuclear Engineering and Design238 (2008) 2369–2376Search in Google Scholar
18 C. J.Fong; G. E.Apostolakis; D. R.Langewish; P.Hejzlar; N. E.Todreas; M. J.Driscoll: Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor. Nuclear Engineering and Design239 (2009) 2660–267110.1016/j.nucengdes.2009.07.008Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors: a review – Part II: R&D necessities and development across the world
- Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
- Calculation of excitation functions for the production of Cu and Co medical isotopes
- Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
- Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
- Steam drum level control studies of a natural circulation multi loop reactor
- Analyses in regulatory practice
- Technical Notes/Technische Mitteilungen
- Installation and measurement capacity of 3 × 592 GBq 241Am–Be neutron irradiation cell
- Calculation of the critical thickness for one-speed neutrons in a reflected slab with backward and forward scattering using modified TN method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors: a review – Part II: R&D necessities and development across the world
- Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
- Calculation of excitation functions for the production of Cu and Co medical isotopes
- Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
- Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
- Steam drum level control studies of a natural circulation multi loop reactor
- Analyses in regulatory practice
- Technical Notes/Technische Mitteilungen
- Installation and measurement capacity of 3 × 592 GBq 241Am–Be neutron irradiation cell
- Calculation of the critical thickness for one-speed neutrons in a reflected slab with backward and forward scattering using modified TN method