Home Technology Local heat transfer coefficient near the spacer grids
Article
Licensed
Unlicensed Requires Authentication

Local heat transfer coefficient near the spacer grids

  • B. Cesna and M. Valincius
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

The paper presents the experimental data of the local heat transfer in the fuel rod assembly with honeycomb type spacer grids. It was established experimentally that the separation of the boundary layer behind the spacer grid increases the interchannel coefficient of transverse mixing of flow, and therefore, the local heat transfer. If the distance between the spacer grids is relatively small, they influence one another through the redistribution of mass flow in elementary channels. The local heat transfer behind the spacer grid varies with a distance from it. The local heat transfer can be determined within ±3% using similar equations for any elementary cell.

Kurzfassung

In diesem Beitrag werden die experimentellen Ergebnisse der lokalen Wärmeübertragung in einer Brennelementanordnung mit wabenförmigen Abstandsgittern vorgestellt. Es zeigte sich, dass die Abtrennung der Grenzschicht hinter den Abstandsgittern den transversalen Mischungskoeffizienten einer Strömung zwischen den Kanälen erhöht und deshalb auch die lokale Wärmeübertragung. Wenn der Abstand zwischen den Abstandsgittern verhältnismäßig klein ist, so beeinflussen sich die Abstandsgitter gegenseitig über die Umverteilung des Massenstroms in den elementaren Kanälen. Die lokale Wärmeübertragung hinter dem Abstandsgitter verändert sich in Abhängigkeit vom Abstand. Die lokale Wärmeübertragung kann mit einer Genauigkeit von ±3% für jede beliebige elementare Zelle mit Hilfe ähnlicher Gleichungen berechnet werden.

References

1 Cesna, B.: Analytical model for calculation of the thermo hydraulic parameters in a fuel rod assembly. Nuclear Eng. and Des.240 (2010) 3708371510.1016/j.nucengdes.2010.06.045Search in Google Scholar

2 Zukauskas, A.: High-performance single-phase heat exchangers. Hemisphere, New York. 1989Search in Google Scholar

3 Kutateladze, S. S.: Fundamentals of heat transfer theory. Moscow, Atomizdat. 1979Search in Google Scholar

4 Cesna, B.: Heat transfer and hydrodynamics in gas-cooled fuel rod assemblies. Begell House Inc, New York and Lithuanian energy institute, Kaunas, 2005Search in Google Scholar

5 Rowe, D. S.; Angle, C. W.: Experimental study of mixing between rod-bundle fuel element flow channels during boiling. Trans. of ANS10 (1967) 655656Search in Google Scholar

6 Chesna, B. A.; Survila, V. Yu.; Adomaitis, E. I.: Effect of surface turbulizers on the local heat transfer rate at a cylinder in a longitudinal stream of air. International Chemical Engineering19 (1979) 276280Search in Google Scholar

7 Chesna, B. A.; Kolesnikovas, I. Yu.: Local Heat Transfer in the Assembly in Longitudinal Flow. Heat and Mass Transfer: MMF, Minsk International Forum, 24–27 May. Section 1, Pt. 2. Minsk, (1988) 121124Search in Google Scholar

Received: 2011-01-12
Published Online: 2013-04-19
Published in Print: 2011-08-01

© 2011, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110157/pdf
Scroll to top button