Investigations of bi-directional flow behaviour in presence of a large vertical opening in a fire compartment
-
P. K. Sharma
and B. Gera
Abstract
In the complex thermal hydraulics codes developed for fire, reactor and containment safety the junctions in the multi-compartment geometries are often modeled as uni-directional junctions and some construct of flow coefficient. However, certain large size junctions are known to depict bi-directional flow behaviour under specific circumstances. The CFD based computer code FDS was used for an earlier reported study of fire in an enclosure on the bidirectional flow behaviour in present of a wall opening. Numerical simulation is directed to monitor the entrainment of the fresh air from outside to the fire compartment and resulting plume deflection due to presence of a big opening. The paper presents the details of the analysis, the results obtained, and comparison with the reported experimental data in terms of plume deflection, entrainment. Detailed investigations have been carried out to understand the bi-directionality of a junction by analyzing studying the outgoing hot air flow and incoming cold air.
Kurzfassung
In den Thermohydraulik-Rechencodes, die für die Brandanalyse und für die thermohydraulische Analyse des Containments entwickelt wurden, werden die Nahtstellen in den Multi-Kompartment-Geometrien oft als unidirektionale Übergänge modelliert. Deckenanschlüsse zeigen jedoch unter gewissen Umständen bidirektionales Strömungsverhalten. Der CFD basierte Rechencode Fire Dynamics Simulator (FDS) wurde in einer früheren Brandstudie verwendet zur Berechnung des bidirektionalen Strömungsverhalten bei Vorhandensein einer Wandöffnung. Die numerische Simulation dient der Überwachung des Einzugs von Frischluft von außerhalb des Brandabschnitts und der Abluftfahne aufgrund einer großen Öffnung. Die vorliegende Arbeit stellt die Einzelheiten der Analyse dar, die erhaltenen Ergebnisse und ein Vergleich mit experimentellen Daten. Detaillierte Untersuchungen wurden durchgeführt um die Bidirektionalität einer Nahtstelle zu verstehen durch Analyse der rausgehenden heißen Luftströmung und der reinkommenden kalten Luftströmung.
References
1 Sharma, P. K.; Haware, S. K.; Ghosh, A. K.; Kushwaha, H. S.: Analysis of Containment of Rajasthan Atomic Power Station Following LOCA. Fourth International Heat and Mass Transfer- ASME, January 12–14, Institute of Armament Technology, Pune, India (2000)Search in Google Scholar
2 Fischer, S. R. et al.: RELAP4/MOD6: A Computer Program for Transient Thermal – Hydraulic Analysis of Nuclear Reactors and Related System, User's Manual INEL Report No. CDAP TR003 (1978)Search in Google Scholar
3 The RELAP5 Code Development Team. Relap5/Mod3.2: Relap5/Mod3 Code Manual Volume I: Code Structure, System Models, and Solution Methods. NUREG/CR-5535, INEL-95/0174, 1995Search in Google Scholar
4 Rockett, 1976Search in Google Scholar
5 Babrauskas, V.; Williamson, R. B.: Post-Flashover Compartment Fires: Basis of a Theoretical Model. Fire and Materials2 (1978) 39–5310.1002/fam.810020202Search in Google Scholar
6 Moysés, A. N.; André, A.: Campagnole dos Santos, Sydney da Silva Gomes, Luiz Henrique A Brittes, (2007). Numerical Simulation of Water Flow through the Bottom End Piece of a Nuclear Fuel Assembly. International Nuclear Atlantic.Search in Google Scholar
7 Burchiu, S.: Etude de l'influence d'un système dechauffage sur l'état thermique et aéraulique desbâtiments multizones avec prise en compte de lastratification thermique. PhD Thesis, Institut Nationaldes Sciences Appliquées de Lyon (1998)Search in Google Scholar
8 Massey, B. S.: Mechanics of Fluids, Sixth Edition. Chapman & Hall, London, (1989)10.1007/978-1-4615-7408-8Search in Google Scholar
9 Thomas, P. H.: The Growth of Fire-Ignition to Full Involvement. Combustion Fundamentals of Fire. Academic Press, London, (1995) 275–328Search in Google Scholar
10 Prahl, J.; Emmons, H. W.: Fire Induced Flow through an Opening. Combustion (1975)10.1016/0010-2180(75)90109-1Search in Google Scholar
11 Nakaya, I.; Tanaka, T.; Yoshida, M.: Doorway Flow Induced by a Propane fire. Fire Safety Journal 10: 185–195 and Flame25 (1986) 369–385Search in Google Scholar
12 Steckler, K. D.; Quintiere, J. G.; Rinkinen, W. J.: Flow Induced by Fire in a Compartment. U. S. Dept. of Commerce, NBSIR 82–2520 (1982)10.6028/NBS.IR.82-2520Search in Google Scholar
13 Straube, J. F.; Burnett, E. F. P.: Vents, Ventilation and Masonry Veneer Wall Systems (1998). Proceedings of Eight Canadian Masonry Symposium May 31–June 3, 1998, Jasper, Alta., Canada, 194–207Search in Google Scholar
14 Quintiere, J. G.; Lei, W.: A general formula for the prediction of vent flows. Fire Safety Journal44 (2009) 789–79210.1016/j.firesaf.2009.03.012Search in Google Scholar
15 Guigay, G.; Karlsson, B.; Horvat, A.; Sinai, Y.: A Different Approach to Vent Flow Calculations in Fire Compartments using the critical Flow Conditions (2010)10.1177/0734904109354966Search in Google Scholar
16 Kumar, S.; Gupta, A. K.; Cox, G.: Effects of Thermal Radiations on the Fluid Dynamics of Compartment Fires. Third. Int. Symp. on Fire Safety Science (1991) 345–354Search in Google Scholar
17 Kerrison, L.; Galea, E. R.; Hoffmann, N.; Patel, M. K.: A Comparison of a FLOW3D Based Fire Field Model with Experimental Room Fire Data. Fire Safety Journal23 (1994) 387–41110.1016/0379-7112(94)90005-1Search in Google Scholar
18 Fusegi, N.; Toru, T.; Forouk, K.; Bakhtier, J.: Numerical study on Interaction of Turbulent Convection and Radiation in Compartment Fires. Fire Science and Technology 810.3210/fst.8.15Search in Google Scholar
19 Sanderson, V.; Rubini, P. A.; Moss, J. B.: The effect of vent size of a compartment fire: Numerical simulation and validation. Proceedings of the Eight International Conferences – INTERFLAM'99. Interscience Communications Ltd., ISBN 0-9532312-1-6, (1999) 1189–1194Search in Google Scholar
20 Keramida, E. P.; Boudouvis, A. G.; Lois, E.; Markatos, N. C.: Evaluation of Two Radiation Models in CFD Fire Modelling. Numerical Heat transfer, Part A39 (2001) 711–72210.1080/10407780152032848Search in Google Scholar
21 Chow, W. K.; Zou, G. W.: Correlation equations on fire-induced air flow rates through doorway derived by large eddy simulation. Building and Environment40 (2005) 897–90610.1016/j.buildenv.2004.09.010Search in Google Scholar
22 McGrattan, K.; McDermott, R.; Hostikka, S.; Floyd, J.: Fire Dynamics Simulator (Version 5), User's Guide NIST Special Publication 1019–5, in cooperation with: VTT Technical Research Centre of Finland National Institute of Standards and Technology, June 23, 2010, Gaithersburg, MarylandSearch in Google Scholar
23 McGrattan, K.; Hostikka, S.; Floyd, J.; Baum, H.; Rehm, R.: Fire Dynamics Simulator (Version 5) Volume-3, Verification. Technical Reference Guide NIST Special Publication 1018–5, In cooperation with: VTT Technical Research Centre of Finland National Institute of Standards and Technology, October 1, 2007, Gaithersburg, Maryland (2007)Search in Google Scholar
24 McGrattan, K.; Hostikka, S.; Floyd, J.; Baum, H.; Rehm, R.: Fire Dynamics Simulator (Version 5) Volume-1 Mathematical Model. Technical Reference Guide NIST Special Publication 1018–5, In cooperation with: VTT Technical Research Centre of Finland National Institute of Standards and Technology, October 1, 2007, Gaithersburg, Maryland (2007)Search in Google Scholar
25 Yii, E. H.; Fleischmann, C. M.; Buchanan, A. H.: Vent Flows in fire compartments with a large opening. Journal of Fire Protection Engineering17 (2007) 211–23810.1177/1042391507069634Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Stress analyses for reactor pressure vessels by the example of a product line '69 Boiling Water Reactor
- Multiple condensation induced water hammer events, experiments and theoretical investigations
- Simulation of load following mode of operation for a natural circulation pressure tube type BWR
- CANDU fuel elements behaviour in the load following tests
- Local heat transfer coefficient near the spacer grids
- Best estimate analysis of PHEBUS FPT1 experiment bundle phase using ASTEC code ICARE module
- Investigations of bi-directional flow behaviour in presence of a large vertical opening in a fire compartment
- CANDU reactors with reactor grade plutonium/thorium carbide fuel
- Novel method to produce 109Cd via proton irradiation of electroplated silver on a gold-coated copper backing
- Technical Notes/Technische Mitteilungen
- Atmospheric dispersion of accidental release of radioactive gases from high enriched and low enriched fuel of Miniature Neutron Source Reactors (MNSR)
- Fuel burnup of modified fuel assembly configurations for a small medical reactor
- Determination of natural uranium, thorium and radium isotopes in water and soil samples by alpha spectroscopy
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Stress analyses for reactor pressure vessels by the example of a product line '69 Boiling Water Reactor
- Multiple condensation induced water hammer events, experiments and theoretical investigations
- Simulation of load following mode of operation for a natural circulation pressure tube type BWR
- CANDU fuel elements behaviour in the load following tests
- Local heat transfer coefficient near the spacer grids
- Best estimate analysis of PHEBUS FPT1 experiment bundle phase using ASTEC code ICARE module
- Investigations of bi-directional flow behaviour in presence of a large vertical opening in a fire compartment
- CANDU reactors with reactor grade plutonium/thorium carbide fuel
- Novel method to produce 109Cd via proton irradiation of electroplated silver on a gold-coated copper backing
- Technical Notes/Technische Mitteilungen
- Atmospheric dispersion of accidental release of radioactive gases from high enriched and low enriched fuel of Miniature Neutron Source Reactors (MNSR)
- Fuel burnup of modified fuel assembly configurations for a small medical reactor
- Determination of natural uranium, thorium and radium isotopes in water and soil samples by alpha spectroscopy