Development and validation of the pressure surge computer code DYVRO mod. 3
-
T. Neuhaus
, A. Schaffrath und E. Altstadt
Abstract
Pressure fluctuations are generated in pipeline systems, when a fluid is rapidly accelerated or decelerated by fast closing or opening a valve, pump trip or start, breaking of pipes etc. TUEV NORD SysTec GmbH & Co. KG performs calculations of pressure surges in power plants and especially in nuclear power plants for many years. For this reason TUEV NORD has developed and qualified the pressure surge computer code DYVRO. This contribution describes in detail the actual code version DYVRO mod. 3 that has been modified with regard to the system of partial differential equations and the numerical scheme. Also the validation against representative experiments like the Simpson's experiment and an experiment at the Cold Water Hammer Test Facility CWHTF is shown. Results of DYVRO calculations are afterwards compared with results of own and external simulations with system codes (ATHLET and RELAP5) and with the pressure surge code WAHA. For this purpose the outcome of the EU project WAHALOADS that was supported within the 5th framework programme has been used.
Kurzfassung
Druckstöße entstehen in Rohrleitungssystemen immer dann, wenn ein Medium (z. B. eine Flüssigkeit oder ein Gas) durch das plötzliche Öffnen oder Schließen einer Armatur oder der Änderung der Drehzahl einer Pumpe beschleunigt oder abgebremst wird. Hierbei entstehen Druckwellen, die erhöhte Innendrücke oder Längskräfte hervorrufen können. Die TÜV NORD SysTec GmbH & Co. KG beschäftigt sich seit vielen Jahren mit der Berechnung von Druckstößen in (Kern-)Kraftwerken. Hierzu hat sie das Druckstoßprogramm DYVRO entwickelt und qualifiziert. Der vorliegende Beitrag beschreibt die nun hinsichtlich der partiellen Differentialgleichungen und des numerischen Lösungsschemas überarbeitete Programmversion DYVRO Mod. 3 und deren Validierung anhand repräsentativer Experimente (u. a. anhand ausgewählter Simpson- sowie der Cold Water Hammer Tests). Die Ergebnisse der Validierungsrechnungen werden anschließend mit eigenen oder fremden Rechnungen mit Systemcodes (hier ATHLET und RELAP) sowie dem Druckstoßprogramm WAHA verglichen. Bei diesen Vergleichen werden u. a. die Ergebnisse des im 5. EU-Rahmenprogramm geförderten Forschungsvorhaben WAHALOADS mit einbezogen.
References
1 Wylie, E. B.; Streeter, V. L.; Suo, L.: Fluid Transients in Systems. Prentice Hall, Englewood Cliffs, USA, 1993Suche in Google Scholar
2 Nagel, J.: Fluiddynamische Lastfälle mit Strömung von Wasser-Dampf-Gemisch, Rechenprogramm DYVRO, Experimentelle Absicherung des Rechenmodells. Arbeitsbericht vom Technischen Überwachungs-Verein Norddeutschland e. V., Abteilung Kerntechnik und Strahlenschutz vom 16.12.1983, Az.: KE 27.10.1Suche in Google Scholar
3 Simpson, A. R.: Large Water Hammer Pressures due to Column Separation in Sloping Pipes (Transient, Cavitation), PhD Thesis, The University of Michigan, 1986Suche in Google Scholar
4 Altstadt, E.; Carl, H.; Weiss, R.: Fluid-Structure Interaction Experiments at the Water-Hammer Test Facility of Forschungszentrum Rossendorf. Jahrestagung Kerntechnik2002, pp. 559–564Suche in Google Scholar
5 Gesellschaft für Anlagen- und Reaktorsicherheit mbH: ATHLET Mod. 2.0 – Cycle A. User's Manual, October 2003Suche in Google Scholar
6 Carlson, K. E.; Riemke, R. A.; Rouhani, S. Z.; Shumway, R. W.; Weaver, W. L.: RELAP5/MOD3 Code Manual, Vol. 1–7 NUREG/CR-5535, EG & G Idaho, Idaho Falls, 1990Suche in Google Scholar
7 Gale, J.; Tiselj, I.: WAHA (Water Hammer) Computer Code, The Practical Application of Surge Analysis for Design and Operation. 9th International Conference on Pressure Surges, Chester, UK, 24–26 March 2004, Vol. 2, pp. 619–632Suche in Google Scholar
8 Giot, M.; Prasser, H. M.; Dudlik, A.; Ezsol, G.; Jeschke, J.; Lemonnier, H.; Tiselj, I.; Castrillo, F.; Van Hove, W.; Perezagua, R.; Potapov, S.: Two-Phase Flow Water Hammer Transients and Induced Loads on Materials and Structures of Nuclear Power Plant (WAHALOADS) FISA-2003 EU Research in Reactor Safety, Luxembourg, November 200310.1299/jsmeicone.2003.19Suche in Google Scholar
9 Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Ed., Springer Verlag, 199910.1007/978-3-662-03915-1Suche in Google Scholar
10 Perko, H.-D.: Gasausscheidung in instationärer Rohrströmung, Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover, Bericht Nr. 16/1985, ISSN 0177-9028Suche in Google Scholar
11 Kretschmar, H.-J.; Stöcker, I.; Jähne, I.; Knoblauch, K.: Stoffwerteprogrammbibliothek für die Industrieformulation IAPWS-IF97 von Wasser und Wasserdampf. Hochschule Zittau/Görlitz, 20.04.2007Suche in Google Scholar
12 VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 10. Auflage, Springer-Verlag, 2006Suche in Google Scholar
13 Vitkovsky, J.; Lambert, M. F.; Simpson, A. R.; Bergant, A.: Advances in Unsteady Friction Modelling in Transient Pipe Flow, Pressure Surges, Safe Design and Operation of Industrial Pipe Systems, A.Anderson (ed.), Professional Engineering Publishing Ltd., Burry St. Edmunds, England, 2000, pp. 471–482Suche in Google Scholar
14 Joukowsky, N. J.: Über den hydraulischen Stoß in Wasserleitungsrohren, Voß, Petersburg und Leipzig, 1900Suche in Google Scholar
15 Dudlik, A.: Vergleichende Untersuchungen zur Beschreibung von transienten Strömungsvorgängen in Rohrleitungen. UMSICHT-Schriftenreihe Band20, D, 1999Suche in Google Scholar
16 Tijsseling, A. S.: Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review. Journal of Fluids and Structures10 (1996) 109–146Suche in Google Scholar
17 Edwards, A. R.; O'Brien, T. P.: Studies of phenomena connected with the depressurization of water reactors, Journal of the British Nuclear Society9 (1970) 125–135Suche in Google Scholar
© 2008, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development and validation of the pressure surge computer code DYVRO mod. 3
- Simulation model of a nuclear power plant turbine
- Study on the thermal-hydraulics characteristics of a boiling two-phase natural circulation loop with nanofluids
- The effect of combination of different materials on neutron absorption in a nuclear research reactor spent fuel pool
- Re-evaluation of the criticality experiments of the “Otto Hahn Nuclear Ship” reactor
- Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant
- Radiological consequences of potential sabotage attack to storage casks on the ISFSI site
- Unified treatment of the P(λ)n approximation to solve the reflected slab criticality problem with strong anisotropy
- A comparative study on classical polynomial approximations to the transport equation in spherical media albedo problems
- Solution of half space and slab albedo problems for linearly anisotropic scattering with the modified FN method
- Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development and validation of the pressure surge computer code DYVRO mod. 3
- Simulation model of a nuclear power plant turbine
- Study on the thermal-hydraulics characteristics of a boiling two-phase natural circulation loop with nanofluids
- The effect of combination of different materials on neutron absorption in a nuclear research reactor spent fuel pool
- Re-evaluation of the criticality experiments of the “Otto Hahn Nuclear Ship” reactor
- Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant
- Radiological consequences of potential sabotage attack to storage casks on the ISFSI site
- Unified treatment of the P(λ)n approximation to solve the reflected slab criticality problem with strong anisotropy
- A comparative study on classical polynomial approximations to the transport equation in spherical media albedo problems
- Solution of half space and slab albedo problems for linearly anisotropic scattering with the modified FN method
- Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials