Simulation model of a nuclear power plant turbine
-
A. Dutta
, P. Goyal , R. K. Singh und A. K. Ghosh
Abstract
A computer code “TURDYN” has been developed for prediction of high pressure and low pressure turbine torque under thermodynamic transient conditions. The model is based on the conservation laws of mass and energy. All the important components of turbine systems, e. g. high pressure turbine, low pressure turbine, feed heaters, reheater, moisture separator have been considered. The dynamic equations are solved simultaneously to obtain the stage pressure at various load conditions. The details of the mathematical formulation of the model and open loop responses for specific disturbances are presented.
Kurzfassung
Ein Rechencode „TURDYN“ wurde zur Vorhersage des Turbinen-Drehmoments bei hohem und niedrigem Druck unter thermodynamischen Transientenbedingungen entwickelt. Das Modell basiert auf den Gesetzen zur Erhaltung von Masse und Energie. Alle wichtigen Komponenten von Turbinensystemen wie z. B. Hochdruck- und Niederdruckturbinen, Vorwärmer, Zwischenüberhitzer, Separatoren wurden berücksichtigt. Die thermodynamischen Gleichungen werden gleichzeitig gelöst, um die Druckstufen unter verschiedenen Belastungsbedingungen zu erfassen. Die Einzelheiten der mathematischen Formulierung des Modells, sowie das Leerlaufverhalten bei speziellen Betriebsstörungen werden vorgestellt.
References
1 Girija Shankar, P. V.: Simulation model of a nuclear reactor turbine. Nuclear Eng. and Design44 (1977) 269–27710.1016/0029-5493(77)90034-6Suche in Google Scholar
2 Power System Simulator, Description of Models, IBM Report (1972)Suche in Google Scholar
3 Murty, L. G.; Kale, D. D.: Thermodynamic transients in nuclear steam turbines. Nuclear Eng. and Design66 (1981) 117–12410.1016/0029-5493(81)90185-0Suche in Google Scholar
4 Vani, K.; Kumar, R.; Chakraborty, G.; Venkat Raj, V.: Mathematical modeling of a nuclear power plant turbine with its governing and control systems. Proceedings of International ASME Conference on Signals Data Systems, Bangalore(India), Dec. 8–10, 1993, ASME Press, Vol. 2, 237–248Suche in Google Scholar
5 Dutta, A.; Patwegar, I. A.; Chaki, S. K.; Venkat Raj, V.: Computer code “TURDYN” for analysis of AHWR turbine transient torque. 28th National Conference on Fluid mechanics and Fluid power, Dec. 13–15, 2001, ChandigarhSuche in Google Scholar
6 Sinha, R. K.; Kakodkar, A.: Requirements of the design of the Advanced Heavy Water Reactor, IAEA TCM workshop for next generation water cooled reactors. Beijing, China, October, 1990Suche in Google Scholar
7 Kearton, W. J.: Steam turbine theory and practice. ELBS Pitman, London, 1962Suche in Google Scholar
8 Thermal power generation, TEP – 9, 2004.08.30, Institutt for Energi – ogprosessteknikk – NTNUSuche in Google Scholar
9 AshokRay: “Dynamic modeling of power plant turbines for controller design”, Appl. Math. Modelling, Vol. 4, April, 198010.1016/0307-904X(80)90114-6Suche in Google Scholar
10 WASP – A flexible Fortran computer code for calculating water and steam properties, Lewis Research Center, Cleveland, Ohio, NASA TN D – 7391, Nov., 1973Suche in Google Scholar
11 Patwegar, I. A.; Dutta, A.; Chaki, S. K.; Venkat Raj, V.: Economic and Safety Aspects of using Moderator Heat for Feed Water Heating in a Nuclear Power Plant. Proceedings of First National Conference on Nuclear Reactor Technology, Nov. 25–27, 2002Suche in Google Scholar
© 2008, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development and validation of the pressure surge computer code DYVRO mod. 3
- Simulation model of a nuclear power plant turbine
- Study on the thermal-hydraulics characteristics of a boiling two-phase natural circulation loop with nanofluids
- The effect of combination of different materials on neutron absorption in a nuclear research reactor spent fuel pool
- Re-evaluation of the criticality experiments of the “Otto Hahn Nuclear Ship” reactor
- Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant
- Radiological consequences of potential sabotage attack to storage casks on the ISFSI site
- Unified treatment of the P(λ)n approximation to solve the reflected slab criticality problem with strong anisotropy
- A comparative study on classical polynomial approximations to the transport equation in spherical media albedo problems
- Solution of half space and slab albedo problems for linearly anisotropic scattering with the modified FN method
- Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development and validation of the pressure surge computer code DYVRO mod. 3
- Simulation model of a nuclear power plant turbine
- Study on the thermal-hydraulics characteristics of a boiling two-phase natural circulation loop with nanofluids
- The effect of combination of different materials on neutron absorption in a nuclear research reactor spent fuel pool
- Re-evaluation of the criticality experiments of the “Otto Hahn Nuclear Ship” reactor
- Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant
- Radiological consequences of potential sabotage attack to storage casks on the ISFSI site
- Unified treatment of the P(λ)n approximation to solve the reflected slab criticality problem with strong anisotropy
- A comparative study on classical polynomial approximations to the transport equation in spherical media albedo problems
- Solution of half space and slab albedo problems for linearly anisotropic scattering with the modified FN method
- Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials