Home Technology Theoretical studies on thermal stratification in a side heated cavity
Article
Licensed
Unlicensed Requires Authentication

Theoretical studies on thermal stratification in a side heated cavity

  • N. V. Satish Kumar , N. K. Maheshwari , P. K. Vijayan , D. Saha and R. K. Sinha
Published/Copyright: May 5, 2013
Become an author with De Gruyter Brill

Abstract

The Advanced Heavy Water Reactor (AHWR) being designed in India is a vertical pressure tube type boiling water-cooled and heavy water moderated reactor. A key feature of the AHWR is the use of simple passive systems to respond to any postulated accidental condition. Passive Containment Cooling System (PCCS), is one such system, which provides long term cooling for the reactor containment following a Loss Of Coolant Accident (LOCA). The system consists of Immersed Condensers immersed in a gravity driven water pool. One of the important phenomena related to PCCS functioning is the effect of thermal stratification in the water pool. The heat transfer from IC to water pool takes place by natural convection. In this process, the pool water can get stratified. Towards the top of the water pool, the temperature of water may reach almost the boiling point while at the bottom of the pool, the water is likely to remain at the initial temperature. Hence, in order to study the integral system response of PCCS, the phenomenon of stratification requires to be investigated. Towards this objective, the case of a rectangular enclosure heated symmetrically on both the vertical sides was considered and a two-dimensional analysis was done by numerically solving the mass, momentum and energy equations. Theoretical results were generated by the use of a computer code developed for this purpose and the results are then compared with the experimental results available in literature.

Kurzfassung

Der in Indien entwickelte fortgeschrittene Schwerwasserreaktor (AHWR) ist ein vertikaler Druckröhrensiedewasserreaktor mit Schwerwasser als Moderator und Kühlmittel. Ein wesentliches Merkmal des AHWR ist die Auslegung mit einfachen passiven Sicherheitssystemen für alle postulierten Störfallverläufe. Ein solches System ist das passive Kühlsystem des Sicherheitsbehälters (PCCS), das eine Langzeitkühlung des Reaktorsicherheitsbehälters bei einem Kühlmittelverluststörfall (LOCA) gewährleistet. Das System besteht aus Kondensatoren (IC) innerhalb eines Wasserbeckens nach dem Schwerkraftprinzip. Der Wärmetransfer vom IC zum Wasserbecken erfolgt durch natürliche Konvektion. Während dieses Prozesses kann im Wasserbecken eine Wärmeschichtung entstehen. Oben im Becken kann die Temperatur des Wassers nahezu den Siedepunkt erreichen, während am Boden des Beckens das Wasser nahezu seine Anfangstemperatur behält. Zur Untersuchung der integralen Lösung des PCCS muss deshalb das Phänomen der Wärmeschichtung näher betrachtet werden. Dazu wurde am Beispiel eines rechteckigen Behälters, der an den vertikalen Seiten symmetrisch erwärmt wurde, eine zweidimensionale numerische Analyse der entsprechenden Massen-, Impuls und Energiegleichungen durchgeführt. Zu diesem Zweck wurde ein Computercode entwickelt und die berechneten Ergebnisse wurden mit den in der Literatur vorhandenen experimentellen Ergebnissen verglichen.


Corresponding Author: N. V. Satish Kumar

V. Satish Kumar, N. K. Maheshwari, P. K. Vijayan, D. Saha and R. K. Sinha, Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai-400 085, India, E-mail:


References

1 Brandani, M.et al.: SBWR-Isolation condenser and passive containment cooling: An approach to passive safety. Proceedings of IAEA – TECDOC – 1117, Seoul,30 Nov – 4Dec, 1998.Search in Google Scholar

2 Maheshwari, N. K.; Saha, D.; Chandraker, D. K.; Venkat Raj, V.; Kakodkar, A.: Studies on the behaviour of a passive containment cooling for the Indian Advanced Heavy Water Reactor (AHWR). Kerntechnik66 (2001) 15.Search in Google Scholar

3 Schneider, M.; Yoshida, M.; Groll, M.: Cooling of electronic components by mini heat pipe arrays. Proceedings of the fourth ISHMT-ASME Heat and Mass Transfer Conference, Jan12–14, 2000.Search in Google Scholar

4 Saha, S. K.; Mahanta, D. K.: Finite time thermodynamic analysis of a flat plate solar collector. Proceedings of the fourth ISHMT-ASME Heat and Mass Transfer Conference, Jan12–14, 2000.Search in Google Scholar

5 Jaluria, Y.: Buoyancy driven wall flows in enclosure fires. 21st Symposium (International) on combustion, The Combustion Institute, pp. 151157 (1986).Search in Google Scholar

6 Peterson, P. F.: Scaling and analysis of mixing in large stratified volumes. Int. J of Heat and Mass Transfer37 (1994) 97.10.1016/0017-9310(94)90013-2Search in Google Scholar

7 Christensen, J.; Peterson, P. F.: A one-dimensional Lagrangian model for large volume mixing. Nuclear Engineering and Design204 (2001) 299.10.1016/S0029-5493(00)00327-7Search in Google Scholar

8 Simpkins, P. G.; Dudderar, T. D.: Convection in rectangular cavities with differentially heated end walls, Journal of Fluid Mechanics110 (1981) 433.10.1017/S0022112081000827Search in Google Scholar

9 Fusegi, T.; Hyun, J. M.; Kuwahara, K.; Farouk, B.: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. of Heat and Mass Transfer34 (1991) 1543.Search in Google Scholar

10 Yewell, R.; Poulikakos, D.; Bejan, A.: Transient natural convection in cavities: Journal of Heat Transfer104 (1982) 533.10.1115/1.3245126Search in Google Scholar

11 Patankar, S. V.: Numerical Heat Transfer and Fluid flow, McGraw-Hill, USA, 1980.Search in Google Scholar

12 Das, S. P.; Dutta, P.: Numerical and experimental study of thermal stratification in a side heated cavity, Proceedings of the fourth ISHMT-ASME Heat and Mass Transfer Conference, Jan12–14, 2000.Search in Google Scholar

13 Holman, J. P.: Heat Transfer. McGraw-Hill, USA, 1989.Search in Google Scholar

14 Vilet, G. C.; Liu, C. K.: An experimental study of turbulent natural convection boundary layer. Journal of Heat TransferNov(1969)517.10.1115/1.3580236Search in Google Scholar

Published Online: 2013-05-05
Published in Print: 2005-05-01

© 2005, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100233/pdf
Scroll to top button