Startseite Technik Calculation of the energy deposition in the targets from C to U irradiated with intermediate energy protons
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Calculation of the energy deposition in the targets from C to U irradiated with intermediate energy protons

  • C. H. M. Broeders , A. Yu. Konobeyev und A. A. Travleev
Veröffentlicht/Copyright: 2. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The energy deposition was calculated for the targets from carbon to uranium irradiated with intermediate energy protons with the help of different models incorporated in the MCNPX code package (Bertini, CEM and ISABEL) and with the help of the CASCADE/INPE code. The values obtained using the different models and codes are in a good agreement for all targets except uranium. The comparison with the available experimental data for the heat deposition for 0.8, 1.0 and 1.2 GeV protons has been performed. The good agreement is observed for copper, lead and bismuth target. The best result is obtained with the help of the ISABEL model. The systematic dependence of the heat deposition from atomic number of the target was investigated. The contribution of different particles and energy ranges in the heat deposition has been studied at the primary proton energies from 0.3 to 2.5 GeV.

Kurzfassung

Die Energiefreisetzung durch Bestrahlung mit Protonen mit Energien von 0.3 bis 2.5 GeV wurde systematisch berechnet mit den Codes MCNPX (Bertini, CEM und ISABEL Modelloptionen) und CASCADE/INPE. Die Ergebnisse dieser Rechnungen stimmen mit Ausnahme von Uran gut überein. Für die Energien 0.8, 1.0 und 1.2 GeV zeigen Vergleiche mit vorhandenen Experimenten gute Übereinstimmung, wobei die ISABEL Option des MCNPX Codes die besten Ergebnisse liefert. Der Beitrag der einzelnen Teilchen in den verschiedenen Energiebereichen auf die Energiefreisetzung wurde für primäre Proton-Energien von 0.3 bis 2.5 GeV analysiert.

References

1 Hughes, H. G.; Egdorf, H. W.; Gallmeier, F. C.; Hendricks, J. S.et al.: MCNPX™ User's manual, Version 2.4.0, September2002, LA-CP-02-408.Suche in Google Scholar

2 Barashenkov, V. S.; Konobeyev, A. Yu.; Korovin, Yu. A.; Sosnin, V. N.: CASCADE/INPE code system. Atomic Energy87 (1999) 742.10.1007/BF02673263Suche in Google Scholar

3 Belyakov-Bodin, V. I.; Kazaritsky, V. D.; Povarov, A. L.; Chuvilo, I. V.; Sherstnev, V. A.; Ado, J. M.; Azhgirey, I. L.; Mokhov, N. V.: Calorimetric measurements and Monte Carlo analyses of medium-energy protons bombarding lead and bismuth targets. Nucl. Instr. Meth. Phys. Res.A295 (1990) 140.Suche in Google Scholar

4 Belyakov-Bodin, V. I.et al.: Calorimetric measurements and Monte Carlo analyses of medium-energy protons bombarding uranium targets. Atomic Energy70 (1991) 339.10.1007/BF01124502Suche in Google Scholar

5 Belyakov-Bodin, V. I.; Andreev, A. M.; Dubinsky, V. D.; Kazaritsky, V. D.; Povarov, A. L.; Chuvilo, I. V.; Sherstnev, V. A.: Calorimetric measurements of medium-energy protons bombarding beryllium, carbon and aluminium targets. Nucl. Instr. Meth. Phys. Res.A314 (1992) 508.Suche in Google Scholar

6 Belyakov-Bodin, V. I.; Andreev, A. M.; Dubinsky, V. D.; Chuvilo, I. V.; Sherstnev, V. A.: Heat deposition in targets bombardedby medium-energy protons. Nucl. Instr. Meth. Phys. Res.A335 (1993) 30.Suche in Google Scholar

7 Beard, C. A.; Belyakov-Bodin, V. I.: Comparison of energy deposition calculations by the LAHET Code System with experimental results. Nucl. Sci. Eng.119 (1995) 87.Suche in Google Scholar

8 Chadwick, M. B.; Young, P. G.; Chiba, S.; Frankle, S. C.; Hale, G. M.; Hughes, H. G.; Koning, A. J.; Little, R. C.; MacFarlane, R. E.; Prael, R. E.; Waters, L. S.: Cross-section evaluations to 150 MeV for Accelerator-Driven Systems and implementation in MCNPX. Nucl. Sci. Eng.131 (1999) 293.Suche in Google Scholar

9 Briesmeister, J. F. (Ed.): MCNP™ – A general Monte Carlo N-particle transport code, UC abc and UC 700, LA-13709-M, Iss. March2000.Suche in Google Scholar

10 Bertini, H. W.: Low-energy intranuclear cascade calculation. Phys.-Rev.131 (1963) 1801.10.1103/PhysRev.131.1801Suche in Google Scholar

11 Bertini, H. W.: Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 MeV and comparisons with experiment. Phys. Rev.188 (1969) 1711.10.1103/PhysRev.188.1711Suche in Google Scholar

12 Yariv, Y.; Fraenkel, Z.: Intranuclear cascade calculation of high-energy heavy-ion interactions. Phys. Rev.C20 (1979) 2227.Suche in Google Scholar

13 Yariv, Y.; Fraenkel, Z.: Intranuclear cascade calculation of high energy heavy ion collisions: effect of interactions between cascade particles. Phys. Rev.C24 (1981) 488.Suche in Google Scholar

14 Chen, K.; Fraenkel, Z.; Friedlander, G.; Grover, J. R.; Miller, J. M.; Shimamoto, Y.: VEGAS: A Monte Carlo simulation of intranuclear cascades. Phys. Rev.166 (1968) 949.10.1103/PhysRev.166.949Suche in Google Scholar

15 Iljinov, A. S.: A code for intranuclear cascade calculation in the energy range < 5 GeV”, JINR Report B1-4-5478, Dubna, 1970.Suche in Google Scholar

16 Barashenkov, V. S.; Toneev, V. D.: Interaction of high energy particles and nuclei with atomic nuclei, Moscow, Atomizdat, 1972.Suche in Google Scholar

17 Gudima, K. K.; Mashnik, S. G.; Toneev, V. D.: Cascade-exciton model of nuclear reactions. Nucl. Phys.A401 (1983) 329.Suche in Google Scholar

18 Mashnik, S. G.: Neutron-induced particle production in the cumulative and noncumulative regions at intermediate energies. Nucl. Phys.A568 (1994) 703.Suche in Google Scholar

19 Mashnik, S. G.; Peterson, R. J.; Sierk, A. J., Braunstein, M. R.: Pion-induced transport of p mesons in nuclei. Phys. Rev.C61 (2000) 034601.Suche in Google Scholar

20 Konobeyev, A. Yu.; Korovin, Yu. A.: Application of the intranuclear cascade evaporation model. Kerntechnik63 (1998) 124.Suche in Google Scholar

21 Bertini, H. W.; Harp, G. D.; Bertrand, F. E.: Comparisons of predictions from two intranuclear-cascade models with measured secondary proton spectra at several angles from 62 – and 39 – MeV protons on various elements. Phys. Rev.C10 (1974) 2472.Suche in Google Scholar

22 Barashenkov, V. S.; Kostenko, B. F.; Zadorogny, A. M.: Time-dependent intranuclear cascade model. Nucl. Phys.A338 (1980) 413.Suche in Google Scholar

23 Barashenkov, V. S.; LeVan Ngok; Levchuk, L. G.; Musulmanbekov, Zh. Zh.et al.: CASCADE – the code package for the simulation of nuclear processes induced by high energy particles and nuclei in gaseous and condensed matter. JINR Report, R2-85-173, Dubna, 1985.Suche in Google Scholar

24 Kozłowski, M.; Müller, H. H.; Wagner, R.: Analyzing power and cross section of the 58Ni, 90Zr, 209Bi (P, 3,4He X) reactions in the continuum described by the coalescence model. Nucl. Phys.A420 (1984) 1.Suche in Google Scholar

25 Awes, T. C.; Poggi, G.; Gelbke, C. K.; Back, B. B.; Glagola, B. G.; Breuer, H.; Viola, V. E.: Precompound emission of light particles in the reaction16O+238U at 20 MeV/nucleon. Phys. Rev.C24 (1981) 89.Suche in Google Scholar

26 Konobeyev, A. Yu.; Korovin, Yu. A.; Vecchi, M.: Fission product yields in nuclear reactions induced by intermediate energy particles. Kerntechnik64 (1999) 216.Suche in Google Scholar

27 WatersL. S. (editor): MCNPX™ User's manual, Version 2.3.0, April2002, LA-UR-02-2607.Suche in Google Scholar

Received: 2003-10-6
Published Online: 2013-05-02
Published in Print: 2004-05-01

© 2004, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.100196/pdf
Button zum nach oben scrollen