A method for in-situ quantification of oxygen in oil using fast neutron activation analysis
-
F. Owrang
, H. Mattsson and A. Nordlund
Abstract
The feasibility of an experimental methodology for in-situ quantification of oxygen in bulk oil using fast neutron activation analysis (FNAA) has been studied. The method was applied for determination of oxygen in 100 ml (∼ 90 g) rapeseed oil. The amount of oxygen in the rapeseed oil using the in-situ FNAA was estimated to 10.6 ± 2.6 weight %. Using cyclic fast neutron activation analysis (cFNAA), the amount of oxygen in the oil was determined in average 9.9 ± 0.4 weight %. Based on Monte Carlo calculations on water, the optimal radius and height of a cylindrical container where the activity is distributed through stirring of the water would be about 10 cm and 44 cm, respectively. These dimensions give a volume of about 14 liters, which is suitable for any type of oil. The accuracy in the in-situ FNAA can be increased by a more precise determination of oxygen in rapeseed oil in the beginning of a dynamic process using cFNAA or alternatively by a better background subtraction.
Kurzfassung
Die Machbarkeit einer experimentellen Methodik zur in-situ Quantifizierung des Sauerstoffgehalts in Öl mit Hilfe der schnellen Neutronenaktivierungsanalyse (FNAA) wurde untersucht. Die Methode wurde angewendet zur Bestimmung von Sauerstoff in 100 ml (∼ 90 g) Rapsöl. Der Sauerstoffanteil in Rapsöl wurde mit Hilfe der in-situ FNAA Methode zu 10.6 ± 2.6 Gewichtsprozente bestimmt. Verwendet man die zyklische schnelle Neutronenaktivierungsanalyse (cFNAA), so ergeben sich für den Sauerstoffanteil in Öl durchschnittlich 9.9 ± 0.4 Gewichtsprozente. Auf der Grundlage von Monte Carlo Berechnungen in Wasser liegt der optimale Radius bzw. die Höhe eines Zylinders, in dem die Aktivität durch Rühren des Wassers verteilt ist, bei 10 cm bzw. 44 cm. Diese Dimensionen ergeben ein Volumen von etwa 14 Litern, das für jede Ölart geeignet ist. Die Genauigkeit der in-situ FNAA Methode kann durch eine genauere Bestimmung des Sauerstoffanteils in Rapsöl zu Beginn eines dynamischen Prozesses mit Hilfe der cFNAA oder alternativ durch eine bessere Untergrundsubtraktion erhöht werden.
References
1 Sandquist, H.; Denbratt, I.; Owrang, F.; Olsson, J.: Influence of fuel parameters on deposit formation and emissions in a direct injection stratified charge SI engine. SAE Technical paper series, SAE paper 2001-01-2028 (2001).10.4271/2001-01-2028Search in Google Scholar
2 Owrang, F.; Mattsson, H.; Nordlund, Olsson, J. O.; Pedersen, G.: Characterization of combustion chamber deposits from a gasoline direct injection SI engine SAE Technical paper series, SAE paper 2003-01-0546, (2003).Search in Google Scholar
3 Williams, P. T.; Andrews, G. E.; Bartle, K. D.: The role of lubricating oil in diesel particulate and particulate PAH emissions. SAE Technical paper series, SAE paper 872084 (1987).10.4271/872084Search in Google Scholar
4 Williams, P. T.; Abbass, M. K.; Andrews, G. E.; Bartle, K. D.: The influence of PAH contamination of lubricating oil on diesel particulate PAH emissions. SAE Technical paper series, SAE paper 890825 (1989).10.4271/890825Search in Google Scholar
5 Boehman, A.; Swain, W. H.; Weller, D. E.; Perez, J. M.: Use of vegetable oil lubricant in a low-heat-rejection engine to reduce particulate emissions. SAE Technical paper series, SAE paper 980887 (1998).10.4271/980887Search in Google Scholar
6 Weller, D. E.; Swain, W. H.; Hess, H.; Boehman, A.; Perez, J. M.: Changes in particulate composition and morphology when using of vegetable oil lubricant in a low heat rejection engine. SAE Technical paper series, SAE paper 1999-01-0975 (1999).10.4271/1999-01-0975Search in Google Scholar
7 Krahl, J.; Bunger, J.; Schroder, O.; Munack, A.; Knothe, G.: Exhaust emissions and health effects of particulate matter from agricultural tractors operating on rapeseed oil methyl ester. J. American Oil Chemical Society.79 (2002) 717.10.1007/s11746-002-0548-9Search in Google Scholar
8 Pedersen, J.; Ingemarsson, Å.; Olsson, J.: Oxidation of rapeseed oil, rapeseed methyl ester (RME) and diesel fuel studied with GC/MS. Chemosphere38 (1999) 2467.10.1016/S0045-6535(98)00452-4Search in Google Scholar
9 Vaitilingom, G.; Perilhon, C.; Liennard, A.; Gandon, M.: Development of Rapeseed Oil Burners for Drying and Heating. Ind. Crops Prod.7 (1998) 273.10.1016/S0926-6690(97)00058-7Search in Google Scholar
10 WichmannP.: Neutron Activation for Elemental Determination in Boreholes. Soc Professional Well Log Analysts, 12th annu Logging Symp Trans, May 2–5 (1971) Dallas, Tex.Search in Google Scholar
11 Hanna, A. G.; Brugger, R. M.; Glascock, M. D.: Prompt Gamma Neutron Activation Analysis Facility at Murr. Nuclear Instruments & Methods in Physics Research188 (1981) 619.10.1016/0029-554X(81)90275-5Search in Google Scholar
12 Glascock, M. D.: Analytical Applications of Prompt Gamma-Ray Neutron Activation Analysis. Transactions of the American Nuclear Society43 (1982) 255.Search in Google Scholar
13 McVey, L. A.; Brodzinski, R. L.; Tanner, T. M.: In Situ Neutron Activation Analysis of and the Neutron Capture Cross-Section for 90Sr. Journal of Radioanalytical Chemistry76 (1983) 131.10.1007/BF02519664Search in Google Scholar
14 Wormwald, M. R.; Clayton, C. G.: In-situ analysis of Coal by Measurement of Neutron-Induced Prompt Gamma-Rays. International Journal of Applied Radiation and Isotopes34 (1983) 71.10.1016/0020-708X(83)90118-7Search in Google Scholar
15 Brune, D.; Forkman, B.; Persson, B.: Nuclear Analytical Chemistry, Chartwell-Bratt, Sweden, (1984) ISBN 0-86238-047-2.Search in Google Scholar
16 Gozani, T.: Physics of Recent Applications of PGNAA for In-Situ Analysis of Bulk Minerals. AIP Conference Proceedings, n 125, (1985) 828.Search in Google Scholar
17 Oliveira, C.; Salgado, J.; Carvalho, F. G.: Optimization of PGNAA Instrument Design for Bulk Coal Analysis. Nuclear Geophysics7 (1993) 285.Search in Google Scholar
18 Dulloo, A. R.; Congedo, T. V.; Ruddy, F. H.; Seidel, J. G.; Williams, R. P.; Weigle, D. H.: Detection of Contaminants in Concrete Surfaces using Prompt Gamma Neutron Activation Analysis. Transactions of the American Nuclear Society73 (1995) 61.Search in Google Scholar
19 Oliveira, C.; Salgado, J.; Carvalho, F. G.: Optimized Geometry for Bulk Coal PGNAA with External Moderation of the Source Neutrons. Nuclear Geophysics9 (1995) 401.Search in Google Scholar
20 Oliveira, C.; Salgado, J.; Goncalves, I. F.; Carvalho, F. G.; Leitao, F.: Monte Carlo Study of the Influence of the Geometry Arrangements and Structural Materials on a PGNAA System Performance for Cement Raw Material Analysis. Applied Radiation and Isotopes48 (1997) 1349.10.1016/S0969-8043(97)00130-9Search in Google Scholar
21 Evans, C. J.; Ryde, S. J. S.; Hancock, D. A.; Al-Agel, F.: Monte Carlo Simulation of Prompt Gamma Neutron Activation Analysis using MCNP Code. Applied Radiation and Isotopes49 (1998) 541.10.1016/S0969-8043(97)00071-7Search in Google Scholar
22 Sparrow, D. A.; Porter, L. J.; Broach, J. T.; Sherbondy, R.: Phenomenology of Prompt Gamma Neutron Activation Analysis in the Detection of Mines and Near-Surface ordnance. Proceedings of the SPIE – The International Society for Optical Engineering3392 (1998) 545.10.1117/12.324227Search in Google Scholar
23 Gardner, R. P.; Mayo, C. W.: NaI Detector Nonlinearity for PGNAA Applications. Radiation and Isotopes51 (1999) 189.10.1016/S0969-8043(98)00183-3Search in Google Scholar
24 Proctor, R., Yusuf, S., Miller, J., Scott, C.: Detectors for On-line Prompt Gamma Neutron Activation Analysis. Nuclear Instruments and Methods in Physics Research A422 (1999) 933.10.1016/S0168-9002(98)01049-3Search in Google Scholar
25 Gardner, Robin P.; Sayyed, El; Zheng, Y.; Hayden, S.; Mayo, S.Charles, W.: NaI Detector Neutron Activation Spectra for PGNAA Applications. Applied Radiation and Isotopes53 (2000) 483.10.1016/S0969-8043(00)00198-6Search in Google Scholar
26 Borsaru, M.; Biggs, M.; Nichols, W.; Bos, F.: Application of Prompt-Gamma Neutron Activation Analysisto Borehole Logging for Coal. Applied Radiation and Isotopes54 (2001) 335.10.1016/S0969-8043(00)00109-3Search in Google Scholar
27 Buffler, A.; Brooks, F. D.; Allie, M. S.; Bharuth-Ram, K.; Nchodu, M. R.: Material Classification by Fast Neutron Scattering. Nuclear Instruments and Methods in Physics Research Section B, 173 (2001) 483.10.1016/S0168-583X(00)00425-0Search in Google Scholar
28 Brooks, F. D.; Buffler, A.; Allie, M. S.; Bharuth-Ram, K.; Nchodu, M. R.; Simpson, B. R. S.: Determination of HCNO Concentrations by Fast Neutron Scattering Analysis. Nuclear Instruments and Methods in Physics Research Section A410 (1998) 319.10.1016/S0168-9002(98)00264-2Search in Google Scholar
29 Randle, K.: Applications of Fast Neutron Activation Analysis (FNAA) at Birmingham. Nuclear Measurements and Methods in Physics Research Section B, B24/25 (1987) 1010.10.1016/S0168-583X(87)80300-2Search in Google Scholar
30 McKlveen, J. W.: Fast Neutron Activation Analysis, Elemental Data base. Ann Arbor Science Publishers, Inc. ISBN: 0-250-40406-0 (1981).Search in Google Scholar
31 Skoog; Holler; Nieman: (1998) “Principles of Instrumental Analysis”, Fifth edition (1998) ISBN: 0-03-002078-6.Search in Google Scholar
32 Owrang, H.; Mattsson, H.; Nordlund, A.: Method of Water Level Detection in Boiling Water Reactors Using 16N Decay. Kerntechnik67 (2002) 296.Search in Google Scholar
33 Nargolwalla, S. S.; Przybylowicz, E. P.: Activation Analysis with Neutron Generators. JOHN WILEY & SONSNew York/London/Sydney/Toronto (1973) ISBN 0-471-63031-4.Search in Google Scholar
34 Soete, D.; Gijbels, R.; Hoste, L.: Neutron activation analysis. WILEY-INTERSCIENCE34 (1972) ISBN 0-471-20390-4.Search in Google Scholar
35 Steele, E. L.; Meinke, W. W.: Determination of Oxygen by Activation Analysis with Fast Neutrons Using a Low-Cost Portable Neutron Generator. Analytical Chemistry34 (1962) 185.10.1021/ac60182a004Search in Google Scholar
36 Hamrin, C. E.; Maa, P. S.; Chyi, L. L.; Ehmann, W. D.: Organic Oxygen Determination of Kentucky No. 9 by Fast-Neutron Activation Analysis. Fuel54 (1975) 70.10.1016/0016-2361(75)90031-9Search in Google Scholar
37 Volborth, A.; Miller, G. E.; Garner, C. K.; Jerabek, P. A.: Oxygen in Coal Ash: A Simplified Approach to the Analysis of Ash and Mineral Matter in Coal. Fuel56 (1977) 204.10.1016/0016-2361(77)90147-8Search in Google Scholar
38 Graham, C. C.; Glascock, M. D.; Carni, J. J.; Vogt, J. R.; Spalding, T. G.: Determination of Elements in National Bureau of Standards' Geological Standard Reference Materials by Neutron Activation Analysis. Analytical Chemistry54 (1982) 1623.10.1021/ac00246a035Search in Google Scholar
39 McKlveen, J. W.: Fast Neutron Activation Analysis in Minerals and Fossil Fuels Exploration. Transactions of the American Nuclear Society44 (1983) 200.Search in Google Scholar
40 Filpus-Luyckx, P. E.; Ogugbuaja, V. O.: An Automated Pneumatic Transfer System for Oxygen Determinations by Neutron Activation Analysis. Nuclear Instruments and Methods in Physics ResearchB24/25 (1987) 1017.Search in Google Scholar
41 Roscoe, B. A.; Grau, J. A.: Response of the Carbon/Oxygen Measurement for an Inelastic Gamma Ray Spectroscopy Tool. SPE Formation Evaluation3 (1988) 76.10.2118/14460-PASearch in Google Scholar
42 Dokhale, P. A.; Bhoraskar, V. N.: Standardization of Process Parameters for a Chemical Reaction using Neutron Activation Analysis Technique. Measurement Science and Technology7 (1996) 1174.10.1088/0957-0233/7/8/013Search in Google Scholar
43 Roscoe, B. A.: Field-test Results of a Three-Phase Holdup Measurement in Horizontal Wells using a Pulsed-Neutron Source. Proceedings – SPE Annual Western Regional Meeting (1998) SPE 38704 9p.10.2118/38704-MSSearch in Google Scholar
© 2004, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Sensitivity analysis of the Peach Bottom Turbine Trip 2 experiment
- Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions
- A new data-condensation method based on multidimensional minimisation
- Current international activities to increase fire protection knowledge for nuclear power plants
- Simple formulas for conservatively calculating the fuel rod cladding strains due to RIA
- Accelerator driven systems for transmutation and energy production: challenges and dangers
- A method for in-situ quantification of oxygen in oil using fast neutron activation analysis
- The time-dependent effect of the biological component of 137Cs soil contamination
- Letter to the Editor
- Remarks on pulsed neutron activation
- On the critical radius of reflected spheres
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Sensitivity analysis of the Peach Bottom Turbine Trip 2 experiment
- Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions
- A new data-condensation method based on multidimensional minimisation
- Current international activities to increase fire protection knowledge for nuclear power plants
- Simple formulas for conservatively calculating the fuel rod cladding strains due to RIA
- Accelerator driven systems for transmutation and energy production: challenges and dangers
- A method for in-situ quantification of oxygen in oil using fast neutron activation analysis
- The time-dependent effect of the biological component of 137Cs soil contamination
- Letter to the Editor
- Remarks on pulsed neutron activation
- On the critical radius of reflected spheres