Home Technology Accelerator driven systems for transmutation and energy production: challenges and dangers
Article
Licensed
Unlicensed Requires Authentication

Accelerator driven systems for transmutation and energy production: challenges and dangers

In memoriam B. A. Kulakov (Dubna, Russia) – a leader in these investigations
  • R. Brandt , W. Birkholz and I. A. Shelaev
Published/Copyright: May 2, 2013
Become an author with De Gruyter Brill

Abstract

Accelerator Driven Systems (ADS) are an old technological idea: Relativistic proton accelerators deliver their beams onto massive heavy element targets, thus producing abundant neutron fluences. Placing this target into sub-critical nuclear fission assemblies is yielding substantial fission reactions, thus additional fission energy (Rubbia called such a system “Energy Amplifier”). This technology has recently attracted considerable attention due to advances in the construction of powerful accelerators. It allows the safe and cheap production of nuclear energy simultaneously with the destruction (Transmutation) of long lived radioactive waste, in particular plutonium and other minor actinides (neptunium and americium). The principles and the present-state-of-the-art are described, including first experiments to transmute plutonium this way. This technology needs, however, many more years of further “research and development” before large scale ADS's can be constructed. It may be even necessary to investigate the question, if all basic physics phenomena of this technology are already sufficiently well understood.

Kurzfassung

Beschleuniger-getriebene-Systeme sind eine alte technologische Idee in der Nuklearwelt: Relativistische Protonen werden auf massive Schwerelement-Targets gelenkt. Dabei entstehen erhebliche Neutronenflüsse. Wenn diese Neutronen in das Innere eines “Unterkritischen Reaktors” geleitet werden, lösen diese weitere Kernspaltungen aus, ergo, zusätzliche Spaltenergie wird frei (Rubbia nennt diese Systeme “Energy Amplifier” oder “Energieverstärker”). Diese Technologie ist in letzter Zeit durch Fortschritte im Bau sehr leistungsfähiger Beschleuniger in das Blickfeld der Öffentlichkeit gelangt, denn sie erlaubt die sichere und billige Produktion der Kernenergie zusammen mit der gleichzeitigen Zerstörung (Transmutation) des langlebigen radioaktiven Abfalles, insbesondere von Pu, Np und Am. Der gegenwärtige Stand der Entwicklung wird beschrieben, einschließlich erster Experimente zu derartiger Transmutation von Pu. Aber es wird noch vieler Jahre intensiver Forschung und Entwicklung bedürfen, bevor im größeren Umfang diese neue Technologie industriell einsetzbar ist. Es erhebt sich sogar die Frage, ob alle Fundamentalaspekte dieser Technologie schon vollständig verstanden werden.

References

1 Lewine Sime, R.: Lise Meitner – A life in physics. University of California Press, Berkeley, California, ISBN 0-520-08906-5, (1996).Search in Google Scholar

2 Brandt, R.et al.: Wide angle emission of heavy fragments in relativistic heavy ion collisions and some open problems. Nuclear Tracks and Radiation Measurements22 (1993) 537.10.1016/0969-8078(93)90125-NSearch in Google Scholar

3 Brandt, R.: Measurements of neutron yields and radioactive isotope transmutation in collisions of relativistic ions with heavy nuclei. Report to the 85th Session of the JINR Scientific Council, January 1999. JINR-print E1-99-251, (1999), Dubna, Russia.Search in Google Scholar

4 Brandt, R.: Some contributions from SSNTD towards nuclear science: from multi-fragmentation towards accelerator driven systems (ADS). Radiation Measurements34 (2001) 211.10.1016/S1350-4487(01)00154-8Search in Google Scholar

5 Anforderungen an endzulagernde radioaktive Abfälle und Maßnahmen zur Produktkontrolle radioaktiver Abfälle, Teil I: Endlagerungsbedingungen Endlager Morsleben. August1996, Bundesamt für Strahlenschutz, Salzgitter, ET-IB-85.Search in Google Scholar

6 Rubbia, C.et al.: A realistic plutonium elimination scheme with fast energy amplifiers and thorium-plutonium fuel. CERN-AT/95-53 (ET) (1995), CERN, Geneva.Search in Google Scholar

7 Friedlander, G.; Kennedey, J. W.; Miller, J. M.: Nuclear and Radiochemistry. J. Wiley & Sons, New York (1955).Search in Google Scholar

8 Choppin, G. R.; Rydberg, J.: Nuclear Chemistry. Pergamon Press, Oxford, (1980) ISBN 0-08-023826-2.Search in Google Scholar

9 Lieser, K. H.: Einführung in die Kernchemie, 3. Auflage, Verlag Chemie, Weinheim, (1980), ISBN 3-527-28329-3.Search in Google Scholar

10 Wan, J. S.et al.: Transmutation of 129I and 237Np using spallation neutrons produced by 1.5, 3.7, and 7.4 GeV protons. Nucl. Instr. & Methods (Special issue on Accelerator Driven Systems) A463 (2001) 634.10.1016/S0168-9002(01)00175-9Search in Google Scholar

11 Wan, J. S.et al.: Transmutation of radioactive waste by means of relativistic heavy ions. Kerntechnik63 (1998) 167.Search in Google Scholar

12 Hashemi-Nezhad, S. R.et al.: Behavior of the neutrons from spallation reactions and Pu-Be source in comparable moderating environments: Experimental estimation of spallation neutron yield. Kerntechnik67 (2002) 281.Search in Google Scholar

13 Hashemi-Nezhad, S. R.et al.: Monte Carlo analysis of accelerator driven systems, studies on spallation neutron yield and energy gain. Kerntechnik66 (2001) 47.Search in Google Scholar

14 Adams, J.et al.: Transmutation of 239Pu and other nuclides using spallation neutrons produced by relativistic protons interacting with massive U- and Pb-targets. Radiochimica Acta90 (2002) 431.10.1524/ract.2002.90.8_2002.431Search in Google Scholar

15 The TARC collaboration (1999) Neutron-driven nuclear transmutation by adiabatic resonance crossing, Final Report to European Commission, EUR19117, Office for Official Publications of the European Communities, ISBN 92-828-7759-0.Search in Google Scholar

16 Arnould, H.et al.: Experimental verification of neutron phenomenology in lead and transmutation by adiabatic resonance crossing in accelerator driven systems. Phys. Letters B458 (1999) 167.10.1016/S0370-2693(99)00584-5Search in Google Scholar

17 Abanades, A.et al.: Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing. Nucl. Instr. & Methods in Physics Research A478 (2002) 577.10.1016/S0168-9002(01)00789-6Search in Google Scholar

18 Rubbia, C.et al.: A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV. CERN/LHC/98-02(EET)-Add.1 (1998), CERN, Geneva.Search in Google Scholar

19 Dinter, H.et al.: Calculation of hadron yields around thick targets and doses behind concrete shielding of high energy electron acceleratorsl. Deutsches Elektronen-Synchrotron, DESY-D3-95 (1999) Hamburg, Germany.Search in Google Scholar

20 Goverdovski, A. A.; Kamanin, D. V.; Matthias, A.: Transmutation of minor actinides with high-current low-energy electron accelerators – Project EDA: Electron Driven Afterburner. publication in preparation (private communication by D. V. Kamanin, JINR, Dubna, 2002).Search in Google Scholar

21 Sato, T.et al.: Measurement of the neutron spectrum by the irradiation of a 2.04 GeV electron beam into thick targets. Nucl. Instr. & Methods in Physics Research A463 (2001) 299.10.1016/S0168-9002(01)00245-5Search in Google Scholar

22 Carminata, F.et al.: An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator. CERN/AT/93-47 (ET)(1993) CERN, Geneva.Search in Google Scholar

23 Vasilkov, R. G.et al.: Neutron yields from massive lead targets irradiated with light relativitic ions. Atomn. Energia70 (1995) 257 (in Russian), and earlier references from R.G.V., given therein, for example: Vasilkov, R. G., et al. (1983) On electronuclear breading, Uspikhi Fiz. Nauk 139, 435.Search in Google Scholar

24 Tolstov, K. D.: JINR, Dubna, print JINR-18-89-778 (1989).Search in Google Scholar

25 Bowman, C. D.et al.: Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instr. and Meth. A320 (1992) 336.10.1016/0168-9002(92)90795-6Search in Google Scholar

26 Ochs, M.et al.: SSNTD and radiochemical studies on the transmutation of nuclei using relativistic ions. Radiation Measurements28 (1997) 255.10.1016/S1350-4487(97)00078-4Search in Google Scholar

27 Brandt, R.: ADS (Accelerator Driven Systems) – A new technology to destroy completely long-lived radwaste. NATO Advanced Research Workshop on “Radionuclides and Heavy Metals in Environment.” October 2000 in Dubna, Russia. Proc.: M.V.Frontasyevaet al. (eds.), (2001), ISBN 1-4020-058-8, p. 367378.Search in Google Scholar

28 Andriamonje, S.et al.: Experimental determination of the energy generated in nuclear cascades by a high energy beam. Phys. Lett. B346 (1995) 697, and Calero, J., et al.: Nucl. Instr. & Meth. A 376 (1996) 89.Search in Google Scholar

29 Magill, J.; Peerani, P.: (Non-) Proliferation aspects of accelerator driven systems. J. Phys. IV, France9 (1999) Pr7167.10.1051/jp4:1999711Search in Google Scholar

30 Enquist, T.et al.: Systematic experimental survey on projectile fragmentation and fission induced in collisions of 238U at 1 AGeV with Pb. GSI-preprint 99-11, Darmstadt, 1.März 1999 andNucl. Phys. A658 (1999) 47.10.1016/S0375-9474(99)00299-7Search in Google Scholar

31 Krivopustov, M. I.et al.: First experiments on transmutation studies on I-129 and Np-237 using relativistic protons of 3.7 GeV. J. Radioanal. and Nucl. Chem. Lett.222 (1997) 267.10.1007/BF02034284Search in Google Scholar

32 Wan, J.-S.et al.: First radiochemical studies on the transmutation of 239Pu with spallation neutrons. J. Radioanal. & Nuclear Chemistry247 (2001) 151.10.1023/A:1006787703538Search in Google Scholar

33 Perelygin, V. P.et al.: Fission of Pb nuclei induced by 0.5, 1.0, 1.5, 3.7 and 7.4 GeV protons in the volume of massive U/Pb and Pb targets. Radiation Measurements34 (2001) 287.10.1016/S1350-4487(01)00169-XSearch in Google Scholar

34 Zamani-Valassiadou, M.et al.: Radiation Measurements26 (1996) 87 and Adloff, J. C. et al.: High flux neutron production from 12C beams on heavy targets. Radiation Measurements 28 (1997) 313.10.1016/1350-4487(95)00262-6Search in Google Scholar

35 Zucker, P.et al.: Spallation neutron production measurements. in H.Conde (editor), Proc. Second Int. Conf. on Accelerator Driven Transmutation Technologies and Applications, Kalmar, Sweden, June 3–7, 1996, Uppsala University, Vol. 1 (1997) 527.Search in Google Scholar

36 Lerman, L.: On the symmetry of nuclear identity between relativistic primary and secondary nuclei. Dissertation, (2002), Fachbereich Chemie, Philipps University, Marburg, Germany.Search in Google Scholar

37 Wang, Y.-L.: Study of neutron emission from massive targets at irradiation with relativistic heavy ions by nuclear emulsions and nuclear track detectors, Ph.D. Thesis, (1998), Advanced Research Institute for Science, Waseda University, Tokyo, Japan.Search in Google Scholar

38 Wang, Y.-L.et al.: Investigation of neutron spectrum emitted from 44 GeV 12C + Cu interactions with nuclear emulsions. Radiation Measurements, 28 (1997) 269.10.1016/S1350-4487(97)00079-6Search in Google Scholar

39 Brandt, R.: Do we really understand nuclear reactions within thick targets using GeV hadrons?Radiation Measurements36 (2003) 249.10.1016/S1350-4487(03)00133-1Search in Google Scholar

Received: 2003-10-22
Published Online: 2013-05-02
Published in Print: 2004-02-01

© 2004, Carl Hanser Verlag, München

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100187/html
Scroll to top button