Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles
-
Yuwen Ju
Abstract
Small-scale model specimens of concrete expanded plates at a scale of 1 : 5 were prepared based on the normal sizes of squeezed branch piles used in engineering applications. Load tests were conducted on the model specimens using an electro-hydraulic compression-testing machine. Through the tests, the complete load-displacement curves of expanded plates were obtained. The test results indicate that the failure mode of expanded plates under the experimental conditions is generally inclined to compression failure and that the major factors affecting the expanded plate's bearing capacity are the compressive strength of concrete, the height-to-width ratio of the expanded plate, and the disc diameter ratio of the expanded plate. Based on the test results, a bearing capacity calculation model for the expanded plate was established. Additionally, a practical calculation formula for the expanded plate's ultimate bearing capacity was derived, where a correlation coefficient (β) was considered to reflect the effects of the expanded plate's failure modes and forces on its bearing capacity. Considering the approximations of the failure modes and forces of expanded plates, a β value of 0.625 may be suggested. The computed bearing capacity values from the derived formula are in good agreement with the test results, as evidenced in the comparison and verification analyses. This study demonstrates the improvement in strength design and calculation theory of expanded plates.
Kurzfassung
Kleinformatige Modellproben von erweiterten Betonplatten im Maßstab 1 : 5 wurden basierend auf der normalen Größe von Quetschpfählen hergestellt, wie sie für die Anwendungstechnik eingesetzt werden. Mit den Modellproben wurden Belastungstests durchgeführt, wobei eine elektro-hydraulische Druckversuchsanlage zum Einsatz kam. In den Versuchen wurden die kompletten Last-Verschiebungs-Kurven der erweiterten Platten aufgenommen. Die Versuchsergebnisse deuten darauf hin, dass die allgemeine Versagensart der erweiterten Platten unter den experimentellen Bedingungen ein Nachgeben unter geneigtem Druck ist und dass die Hauptfaktoren, die die Tragfähigkeit der erweiterten Platten beeinflussen, die Druckfestigkeit des Betons, das Höhen-Breiten-Verhältnis der erweiterten Platte und das Scheiben-Durchmesser-Verhältnis der erweiterten Platte sind. Basierend auf den Versuchsergebnissen wurde ein Berechnungsmodell für die erweiterte Platte aufgestellt. Darüber hinaus wurde eine praktische Berechnungsformel für die Tragfähigkeit der erweiterten Platte abgeleitet, in der ein Korrelationskoeffizient β berücksichtigt wurde, um die Auswirkungen der Versagensarten und der Kräfte der erweiterten Platte auf deren Tragfähigkeit abzubilden. Unter Berücksichtigung der Abschätzungen bezüglich der Versagensart und der Kräfte der erweiterten Platte kann ein Wert für β von 0,625 vorgeschlagen werden. Die aus der hergeleiteten Formel berechneten Tragfähigkeitswerte stimmen gut mit den Versuchsergebnissen überein, was in Vergleichs- und Verifikationsanalysen evident wurde. Die vorliegende Studie demonstriert eine Verbesserung der Festigkeitsauslegung und der Berechnungsweise von erweiterten Platten.
References
1 D. H.Wang, Y. Z.Ju, X. P.Zhao, J. F.Bai: Field test and numerical simulation on bearing capacity of squeezed branch pile in transmission line, Mechanika23 (2017), No. 5, pp. 762–76810.5755/j01.mech.23.5.19357Search in Google Scholar
2 M. U.Ergun, H.Akbulut: Bearing capacity of shaft-expanded driven model piles in sand, Geotechnique45 (1995), No. 4, pp. 715–71810.1680/geot.1995.45.4.715Search in Google Scholar
3 Z. L.Yang, X. L.Gu, G. L.Zhang: Experimental study on bearing capacity of single pile with expanded branches and plates, China Civil Engineering Journal10 (2002), No. 5, pp. 100–104 (in Chinese) 10.3321/j.issn:1000-131X.2002.05.020Search in Google Scholar
4 W. F.Han, B. B.Feng, J.Zhou, C. Y.Lu: The study on the engineering properties of squeezed branch piles under combined load, Applied Mechanics and Materials, 580–583 (2014), pp. 371–37510.4028/www.scientific.net/AMM.580-583.371Search in Google Scholar
5 Y. W.Ju, R. W.Liang, M. W.Zhao, X. H.Bai: Experimental investigation and design analysis of vertically loaded cast-in-situ pile with expanded branches and plates, Rock and Soil Mechanics25 (2004), No. 2, pp. 308–311 (in Chinese) 10.16285/j.rsm.2004.02.034Search in Google Scholar
6 D. L.Qian: Study on loading transfer law and FEM simulation of squeezed branch pile, Chinese Journal of Geotechnical Engineering24 (2002), No. 3, pp. 371–375 (in Chinese) 10.3321/j.issn:1000-4548.2002.03.024Search in Google Scholar
7 D. L.Qian: On the failure behavior of squeezed branch pile, Journal of Hefei University of Technology (Natural Science)24 (2001), No. 5, pp. 955–958 (in Chinese) 10.3969/j.issn.1003-5060.2001.05.021Search in Google Scholar
8 T.Honda, Y.Hirai, E.Sato: Uplift capacity of belled and multi-belled piles in dense sand, Soils and Foundations51 (2011), No. 3, pp. 483–49610.3208/sandf.51.483Search in Google Scholar
9 Z. H.Guo: Strength and Stress-Strain Relation of Concrete – Principle and Application, China Building Industry Publishing House, Beijing, China (2014) (in Chinese)Search in Google Scholar
10 Q.Ni, C. C.Hird, I.Guymer: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry, Geotechnique60 (2010), No. 4, pp. 311–31210.1680/geot.2010.60.4.311Search in Google Scholar
11 S.Caijun: Strength, pore structure and permeability of alkali activated slag mortars, Cement and Concrete Research26 (1996), No. 12, pp. 1789–179910.1016/S0008-8846(96)00174-3Search in Google Scholar
12 J. J.Chang: A study on the setting characteristics of sodium silicate activated slag paste, Cement and Concrete Research33 (2003), No. 7, pp. 1005–101110.1016/S0008-8846(02)01096-7Search in Google Scholar
13 Y. W.Ju: Experimental Research and Theoretical Analysis on Mechanical Characteristics of Piles with Expanded Branches or Plates, Taiyuan University of Technology, Taiyuan, China (2011) 10.7666/d.y788146Search in Google Scholar
14 G. A.Van, L.Taerwe: Analytical formulation of the complete stress-strain curve for high strength concrete, Materials and Structures29 (1996), No. 193, pp. 529–53310.1007/BF02485952Search in Google Scholar
15 G.Lilliu, J. G. M.van Mier: 3D lattice type fracture model for concrete, Engineering Fracture Mechanics70 (2003), No. 7–8, pp. 927–94110.1016/S0013-7944(02)00158-3Search in Google Scholar
16 P.Wriggers, S. O.Moftah: Mesoscale models for concrete: Homogenisation and damage behavior, Finite Element in Analysis and Design42 (2006), No. 7, pp. 623–63610.1016/j.finel.2005.11.008Search in Google Scholar
17 Y. H.Park, W.Morgan: Effective elastic moduli of cracked solid and application to functionally graded material, Pressure Vessels and Piping Division482 (2004), pp. 207–21310.1115/PVP2004-2765Search in Google Scholar
18 N. Q.Feng: High-Performance Concrete Structures, Mechanical Industry Publishing House, Beijing, China(2014) (in Chinese)Search in Google Scholar
19 Y. W.Ju, R. W.Liang, X. H.Bai, S. Y.Zhang: Experimental study on the failure pattern of expanded plates of the squeezed branch pile, Engineering Mechanics30 (2013), No. 5, pp. 188–194 (in Chinese) 10.6052/j.issn.1000-4750.2012.01.0041Search in Google Scholar
20 C. F.Sun, M. E.Wang, Q.Gu, S. M.Peng: Experimental research on punching and shearing bearing capacity of steel fiber reinforced concrete thick pile cap with two piles, Journal of Building Structures25 (2004), No. 1, pp. 107–113 (in Chinese) 10.3321/j.issn:1000-6869.2004.01.015Search in Google Scholar
21 Chinese Code for Design of Concrete Structures (GB 50010-2010), China Architecture & Building Press, Beijing, China (2010) (in Chinese)Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Bending deformation and indentation hardness of electrochemically deposited nanocrystalline nickel-iron alloys
- Al-Si piston alloy behavior under combined mechanical and thermal cyclic loading with superimposed high-frequency thermal cycling
- Porosity of LMD manufactured parts analyzed by Archimedes method and CT
- Structure and mechanical properties of ADC 12 Al foam-polymer interpenetrating phase composites with epoxy resin or silicone
- Strength changes of 40 Cr steel subjected to cyclic torsion below the fatigue limit
- Auxetic aluminum sheets in lightweight structures
- Effect of thickness on the fracture toughness of high strength steel for gas well casings
- Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy
- Correlation of ultrasound velocity with physico-mechanical properties of Jodhpur sandstone
- Etching behavior of ZnO:Ga thin films
- Repair of an aluminum plate with an elliptical hole using a composite patch
- Impression creep behavior of extruded ZK60 and ZK60+1 %Y magnesium alloys
- Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles
- Mechanical properties and microstructure of autoclaved green UHPC blended with granite stone powders
- Mechanical properties and microstructure of glass carbon hybrid composites
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Bending deformation and indentation hardness of electrochemically deposited nanocrystalline nickel-iron alloys
- Al-Si piston alloy behavior under combined mechanical and thermal cyclic loading with superimposed high-frequency thermal cycling
- Porosity of LMD manufactured parts analyzed by Archimedes method and CT
- Structure and mechanical properties of ADC 12 Al foam-polymer interpenetrating phase composites with epoxy resin or silicone
- Strength changes of 40 Cr steel subjected to cyclic torsion below the fatigue limit
- Auxetic aluminum sheets in lightweight structures
- Effect of thickness on the fracture toughness of high strength steel for gas well casings
- Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy
- Correlation of ultrasound velocity with physico-mechanical properties of Jodhpur sandstone
- Etching behavior of ZnO:Ga thin films
- Repair of an aluminum plate with an elliptical hole using a composite patch
- Impression creep behavior of extruded ZK60 and ZK60+1 %Y magnesium alloys
- Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles
- Mechanical properties and microstructure of autoclaved green UHPC blended with granite stone powders
- Mechanical properties and microstructure of glass carbon hybrid composites