Home Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles
Article
Licensed
Unlicensed Requires Authentication

Experimental study for the bearing capacity calculation of concrete expanded plates in squeezed branch piles

  • Yuwen Ju and Y. Frank Chen
Published/Copyright: November 2, 2018
Become an author with De Gruyter Brill

Abstract

Small-scale model specimens of concrete expanded plates at a scale of 1 : 5 were prepared based on the normal sizes of squeezed branch piles used in engineering applications. Load tests were conducted on the model specimens using an electro-hydraulic compression-testing machine. Through the tests, the complete load-displacement curves of expanded plates were obtained. The test results indicate that the failure mode of expanded plates under the experimental conditions is generally inclined to compression failure and that the major factors affecting the expanded plate's bearing capacity are the compressive strength of concrete, the height-to-width ratio of the expanded plate, and the disc diameter ratio of the expanded plate. Based on the test results, a bearing capacity calculation model for the expanded plate was established. Additionally, a practical calculation formula for the expanded plate's ultimate bearing capacity was derived, where a correlation coefficient (β) was considered to reflect the effects of the expanded plate's failure modes and forces on its bearing capacity. Considering the approximations of the failure modes and forces of expanded plates, a β value of 0.625 may be suggested. The computed bearing capacity values from the derived formula are in good agreement with the test results, as evidenced in the comparison and verification analyses. This study demonstrates the improvement in strength design and calculation theory of expanded plates.

Kurzfassung

Kleinformatige Modellproben von erweiterten Betonplatten im Maßstab 1 : 5 wurden basierend auf der normalen Größe von Quetschpfählen hergestellt, wie sie für die Anwendungstechnik eingesetzt werden. Mit den Modellproben wurden Belastungstests durchgeführt, wobei eine elektro-hydraulische Druckversuchsanlage zum Einsatz kam. In den Versuchen wurden die kompletten Last-Verschiebungs-Kurven der erweiterten Platten aufgenommen. Die Versuchsergebnisse deuten darauf hin, dass die allgemeine Versagensart der erweiterten Platten unter den experimentellen Bedingungen ein Nachgeben unter geneigtem Druck ist und dass die Hauptfaktoren, die die Tragfähigkeit der erweiterten Platten beeinflussen, die Druckfestigkeit des Betons, das Höhen-Breiten-Verhältnis der erweiterten Platte und das Scheiben-Durchmesser-Verhältnis der erweiterten Platte sind. Basierend auf den Versuchsergebnissen wurde ein Berechnungsmodell für die erweiterte Platte aufgestellt. Darüber hinaus wurde eine praktische Berechnungsformel für die Tragfähigkeit der erweiterten Platte abgeleitet, in der ein Korrelationskoeffizient β berücksichtigt wurde, um die Auswirkungen der Versagensarten und der Kräfte der erweiterten Platte auf deren Tragfähigkeit abzubilden. Unter Berücksichtigung der Abschätzungen bezüglich der Versagensart und der Kräfte der erweiterten Platte kann ein Wert für β von 0,625 vorgeschlagen werden. Die aus der hergeleiteten Formel berechneten Tragfähigkeitswerte stimmen gut mit den Versuchsergebnissen überein, was in Vergleichs- und Verifikationsanalysen evident wurde. Die vorliegende Studie demonstriert eine Verbesserung der Festigkeitsauslegung und der Berechnungsweise von erweiterten Platten.


*Correspondence Address, Associate Prof. Dr. Yuwen Ju, School of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China, E-mail:
** Prof. Dr. Y. Frank Chen, Department of Civil Engineering, The Pennsylvania State University, 777 W Harrisburg Pike, Middletown, PA 17057, USA, E-mail:

Yuwen Ju, born in 1969, is associate professor at Taiyuan University of Technology, China. He obtained his Doctorate Degree in Structural Engineering from the same university in 2005. His study focuses on the mechanical properties of civil materials.

Y. Frank Chen, born in 1956, is currently a Tenured Professor at the Pennsylvania State University, Middletown, USA, and Distinguished Professor at Southwest University, Chongqing University, and East China Jiaotong University, both in China. He obtained his PhD degree from the University of Minnesota, Minneapolis, USA in 1988. He specializes in dynamic soil-structure interaction, computational methods, bridge engineering, foundations, dynamic-load resistant designs, geo-environmental engineering, and construction materials.


References

1 D. H.Wang, Y. Z.Ju, X. P.Zhao, J. F.Bai: Field test and numerical simulation on bearing capacity of squeezed branch pile in transmission line, Mechanika23 (2017), No. 5, pp. 76276810.5755/j01.mech.23.5.19357Search in Google Scholar

2 M. U.Ergun, H.Akbulut: Bearing capacity of shaft-expanded driven model piles in sand, Geotechnique45 (1995), No. 4, pp. 71571810.1680/geot.1995.45.4.715Search in Google Scholar

3 Z. L.Yang, X. L.Gu, G. L.Zhang: Experimental study on bearing capacity of single pile with expanded branches and plates, China Civil Engineering Journal10 (2002), No. 5, pp. 100104 (in Chinese) 10.3321/j.issn:1000-131X.2002.05.020Search in Google Scholar

4 W. F.Han, B. B.Feng, J.Zhou, C. Y.Lu: The study on the engineering properties of squeezed branch piles under combined load, Applied Mechanics and Materials, 580–583 (2014), pp. 37137510.4028/www.scientific.net/AMM.580-583.371Search in Google Scholar

5 Y. W.Ju, R. W.Liang, M. W.Zhao, X. H.Bai: Experimental investigation and design analysis of vertically loaded cast-in-situ pile with expanded branches and plates, Rock and Soil Mechanics25 (2004), No. 2, pp. 308311 (in Chinese) 10.16285/j.rsm.2004.02.034Search in Google Scholar

6 D. L.Qian: Study on loading transfer law and FEM simulation of squeezed branch pile, Chinese Journal of Geotechnical Engineering24 (2002), No. 3, pp. 371375 (in Chinese) 10.3321/j.issn:1000-4548.2002.03.024Search in Google Scholar

7 D. L.Qian: On the failure behavior of squeezed branch pile, Journal of Hefei University of Technology (Natural Science)24 (2001), No. 5, pp. 955958 (in Chinese) 10.3969/j.issn.1003-5060.2001.05.021Search in Google Scholar

8 T.Honda, Y.Hirai, E.Sato: Uplift capacity of belled and multi-belled piles in dense sand, Soils and Foundations51 (2011), No. 3, pp. 48349610.3208/sandf.51.483Search in Google Scholar

9 Z. H.Guo: Strength and Stress-Strain Relation of Concrete – Principle and Application, China Building Industry Publishing House, Beijing, China (2014) (in Chinese)Search in Google Scholar

10 Q.Ni, C. C.Hird, I.Guymer: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry, Geotechnique60 (2010), No. 4, pp. 31131210.1680/geot.2010.60.4.311Search in Google Scholar

11 S.Caijun: Strength, pore structure and permeability of alkali activated slag mortars, Cement and Concrete Research26 (1996), No. 12, pp. 1789179910.1016/S0008-8846(96)00174-3Search in Google Scholar

12 J. J.Chang: A study on the setting characteristics of sodium silicate activated slag paste, Cement and Concrete Research33 (2003), No. 7, pp. 1005101110.1016/S0008-8846(02)01096-7Search in Google Scholar

13 Y. W.Ju: Experimental Research and Theoretical Analysis on Mechanical Characteristics of Piles with Expanded Branches or Plates, Taiyuan University of Technology, Taiyuan, China (2011) 10.7666/d.y788146Search in Google Scholar

14 G. A.Van, L.Taerwe: Analytical formulation of the complete stress-strain curve for high strength concrete, Materials and Structures29 (1996), No. 193, pp. 52953310.1007/BF02485952Search in Google Scholar

15 G.Lilliu, J. G. M.van Mier: 3D lattice type fracture model for concrete, Engineering Fracture Mechanics70 (2003), No. 7–8, pp. 92794110.1016/S0013-7944(02)00158-3Search in Google Scholar

16 P.Wriggers, S. O.Moftah: Mesoscale models for concrete: Homogenisation and damage behavior, Finite Element in Analysis and Design42 (2006), No. 7, pp. 62363610.1016/j.finel.2005.11.008Search in Google Scholar

17 Y. H.Park, W.Morgan: Effective elastic moduli of cracked solid and application to functionally graded material, Pressure Vessels and Piping Division482 (2004), pp. 20721310.1115/PVP2004-2765Search in Google Scholar

18 N. Q.Feng: High-Performance Concrete Structures, Mechanical Industry Publishing House, Beijing, China(2014) (in Chinese)Search in Google Scholar

19 Y. W.Ju, R. W.Liang, X. H.Bai, S. Y.Zhang: Experimental study on the failure pattern of expanded plates of the squeezed branch pile, Engineering Mechanics30 (2013), No. 5, pp. 188194 (in Chinese) 10.6052/j.issn.1000-4750.2012.01.0041Search in Google Scholar

20 C. F.Sun, M. E.Wang, Q.Gu, S. M.Peng: Experimental research on punching and shearing bearing capacity of steel fiber reinforced concrete thick pile cap with two piles, Journal of Building Structures25 (2004), No. 1, pp. 107113 (in Chinese) 10.3321/j.issn:1000-6869.2004.01.015Search in Google Scholar

21 Chinese Code for Design of Concrete Structures (GB 50010-2010), China Architecture & Building Press, Beijing, China (2010) (in Chinese)Search in Google Scholar

Published Online: 2018-11-02
Published in Print: 2018-11-15

© 2018, Carl Hanser Verlag, München

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111257/html?lang=en
Scroll to top button