Home Assessment of soft materials for anthropomorphic soft robotic fingertips
Article
Licensed
Unlicensed Requires Authentication

Assessment of soft materials for anthropomorphic soft robotic fingertips

  • S. Yuvaraj , R. Malayalamurthi and K. Venkatesh Raja
Published/Copyright: November 15, 2018
Become an author with De Gruyter Brill

Abstract

In recent decades, research on soft robot manipulations and their materials attracted a huge momentum among various researchers. Selection of appropriate soft material is a vital role in robotic fingertip design, which enables the object to be held in proper orientation without slip and damage. Development of such an anthropomorphic type of soft hand requires knowledge about material selection, types of finger contact and the mechanism behind grasping. This research work presents a comprehensive comparison of six chosen soft materials with human skin for improved robotic manipulation. Extensive research is required to develop such soft hands for better manipulation becausein the final analysis, the human hand is the best soft manipulator as it conforms to objects easily through good contact with an object. In the past decades, many researchers have tried to replace metal hand of robots with appropriate soft materials to enable better manipulation. In this work, the magnitude of contact area, contact pressure and vertical depression of six soft materials was compared with human skin with respect to precision grasping. The simulation results clearly show that neoprene rubber exhibits a close relationship with the characteristics of human skin.

Kurzfassung

In den letzten Jahrzehnten hat die Forschung zu weichen Roboterhandhabungen und ihren Werkstoffen einen großen Einfluss auf verschiedene Wissenschaftler gehabt. Die Auswahl eines geeigneten weichen Werkstoffes ist von entscheidender Bedeutung im Design von Roboter-Fingerspitzen, um das Objekt in der richtigen Orientierung ohne Schlupf und Beschädigung zu halten. Die Entwicklung von solchen anthropomorphen Typen weicher Hände erfordert Wissen zur Materialauswahl, den Arten des Fingerkontaktes und den Mechanismen hinter dem Greifvorgang. Die diesem Beitrag zugrundeliegende Forschungsarbeit vermittelt eine umfassende Studie über sechs ausgewählte weiche Materialien im Vergleich zur menschlichen Haut für die Robotor-Handhabung. Extensive Forschung ist erforderlich, um solche weichen Hände für bessere Handhabungen zu entwickeln, zumal die menschliche Hand der beste weiche Manipulator an sich ist, der sich dem Objekt leicht anpasst, indem er einen guten Kontakt zum Objekt hat. In den letzten Jahrzehnten haben viele Forscher versucht, die Metallhand eines Roboters mit geeigneten weichen Materialien für bessere Handhabungen auszustatten. In der vorliegenden Arbeit werden die Größe der Kontaktfläche, der Kontaktdruck und der vertikale Eindruck von sechs weichen Materialien mit der menschlichen Haut für eine präzise Greifbedingung verglichen. Die Simulationsergebnisse zeigen deutlich, dass Neopren-Gummi einen engen Bezug zu den Charakteristika der menschlichen Haut aufweisen.


*Correspondence Address, Assoc. Prof. Dr. K Venkatesh Raja, Head of the Department of, Mechanical Engineering, V S A Group of Institutions, Salem, 636 010, Tamil Nadu, India, E-mail:

S. Yuvaraj, born in 1990, studied Mechanical Engineering at K. S.R College of Engineering, Tiruchengode, Tamil Nadu, India. He completed his Master's degree in Engineering Design at Anna University, Regional Centre, Madurai, Tamil Nadu, India. He has been pursuing his PhD on Soft Finger Contact Mechanics since 2015. He also works as Asst. Professor in the Department of Mechanical Engineering at Rajalakshmi Institute of Technology, Chennai, India.

Prof. Dr. R. Malayalamurthi, born in 1965, studied Mechanical Engineering at Coimbatore Institute of Technology, Tamil Nadu, India. He completed his Master's degree in Computer Aided Design at the Government College of Engineering, Salem, Tamil Nadu, India. He completed his PhD thesis on elasto plastic contacts in 2009 at Anna University, Chennai, India. Currently he has been working as Associate Professor & Head in the Department of Mechanical Engineering, Govt. College of Technology, Coimbatore, India. His area of expertise includes Mechanics, Materials and Optimization.

Prof. Dr. K. Venkatesh Raja, born in 1983, received his bachelor's degree in Mechanical Engineering from Periyar University, Tamil Nadu, India. He completed his Master's Degree in Engineering Design at Sona College of Technology (Autonomous), Salem, Tamil Nadu, India. He completed his PhD thesis on Soft Finger Contact Mechanics in 2015 at Anna University, Chennai, India. Currently, he works as an Associate Professor & Head in the Department of Mechanical Engineering at VSA Group of Institutions, Salem, Tamil Nadu, India. Previously, he was in the Department of Mechanical & Automobile Engineering at K. S. R. College of Engineering (Autonomous), Namakkal, India. His area of expertise includes finite element analysis, contact mechanics, optimization, vibrations and robotics.


References

1 M. T.Mason, J. K.Salisbury: Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, MA (1985)Search in Google Scholar

2 H.Hertz: In Assorted Papers (New York, Macmillan, 1882), quoted in K. L. Johnson, Contact Mechanics, Cambridge University Press: Cambridge, UK (1985)Search in Google Scholar

3 A.Schallamach: The load dependence of rubber friction, Proceedings of the Physical Society, SectionB 65 (1952), No. 9, pp. 65774210.1088/0370-1301/65/9/301Search in Google Scholar

4 M.Cutkosky, J.Jourdain, P.Wright: Skin materials for robotic fingers, Robotics and Automation4 (1987), No. 1, pp. 1649165410.1109/ROBOT.1987.1087913Search in Google Scholar

5 K. B.Shimoga, A. A.Goldenberg: Soft materials for robotic fingers: Robotics and Automation, IEEE, France2 (1992), No. 1, pp. 1300130510.1109/ROBOT.1992.220069Search in Google Scholar

6 Y.Tatara: Extensive theory of force-approach relations of elastic spheres in compression and in impact, Journal of Engineering Materials and Technology11 (1989), No. 2, pp. 16316810.1115/1.3226449Search in Google Scholar

7 Y.Tatara: On compression of rubber elastic sphere over a large range of displacements – Part 1: Theoretical study, Journal of Engineering Materials and Technology113 (1991), No. 3, pp. 28529110.1115/1.2903407Search in Google Scholar

8 Y.Tatara, S.Shima, J. C.Lucero: On compression of rubber elastic sphere over a large range of displacements – Part 2: Comparison of theory and experiment, Journal of Engineering Materials and Technology113 (1991), No. 3, pp. 29229510.1115/1.2903408Search in Google Scholar

9 R. D.Howe, I.Kao, M. R.Cutkosky: The sliding of robot fingers under combined torsion and shear loading, Robotics and Automation, IEEE, USA1 (1988), No. 1, pp. 10310510.1109/ROBOT.1988.12032Search in Google Scholar

10 I.Kao, M. R.Cutkosky: Quasistatic manipulation with compliance and sliding, The International journal of robotics research11 (1992), No. 1, pp. 204010.1177/027836499201100102Search in Google Scholar

11 H.-Y.Han, A.Shimada, S.Kawamura: Analysis of friction on human fingers and design of artificial fingers: Robotics and Automation, IEEE, USA4 (1996), No. 1, pp. 3061306610.1109/ROBOT.1996.509177Search in Google Scholar

12 H.Kinoshita, L.Bäckström, J. R.Flanagan, R. S.Johansson: Tangential torque effects on the control of grip forces when holding objects with a precision grip, Journal of Neurophysiology78 (1997), No. 3, pp. 1619163010.1152/jn.1997.78.3.1619Search in Google Scholar PubMed

13 N.Xydas, I.Kao: Modeling of contact mechanics with experimental results for soft fingers: Intelligent Robots and Systems, IEEE, Japan3 (1998), No. 2, pp. 48849310.1109/IROS.1998.724666Search in Google Scholar

14 N.Xydas, I.Kao: Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results, The International Journal of Robotics Research18 (1999), No. 9, pp. 94195010.1177/02783649922066673Search in Google Scholar

15 N.Xydas, I.Kao: Influence of material properties and fingertip size on the power-law equation for soft fingers: Intelligent Robots and Systems, IEEE, Japan4 (2000), No. 3, pp. 12851290, 10.1109/ROBOT.2000.846351Search in Google Scholar

16 I.Kao, F.Yang: Stiffness and contact mechanics for soft fingers in grasping and manipulation, IEEE Transactions on Robotics and Automation20 (2004), No. 1, pp. 13213510.1109/TRA.2003.820868Search in Google Scholar

17 M.Piccinini, G.Berselli, A.Zucchelli, G.Vassura: Predicting the compliance of soft fingertips with differentiated layer designs: A numerical and experimental investigation: Advanced Robotics, IEEE, Germany1 (2009), No. 1, pp. 16Search in Google Scholar

18 Y.Li, I.Kao: A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics: Robotics and Automation, IEEE, South Korea4 (2001), No. 1, pp. 3055306010.1109/ROBOT.2001.933086Search in Google Scholar

19 K. H.Park, B. H.Kim, S.Hirai: Development of a soft-fingertip and its modeling based on force distribution: Robotics and Automation, IEEE, Taiwan3 (2003), No. 3, pp. 3169317410.1109/ROBOT.2003.1242078Search in Google Scholar

20 N.Elango, R.Marappan: Analysis on the fundamental deformation effect of a robot soft finger and its contact width during power grasping, The International Journal of Advanced Manufacturing Technology52 (2011), No. 5–8, pp. 79780410.1007/s00170-010-2747-7Search in Google Scholar

21 K. V.Raja, R.Malayalamurthi: Assessment and influence of internal rigid core on the contact parameters for soft hemispherical fingertips, Journal of Polymer Engineering34 (2014), No. 2, pp. 14515210.1515/polyeng-2013-0121Search in Google Scholar

22 K. V.Raja, R.Malayalamurthi: Assessment on the contact factors of a sandwich soft finger model–An experimental investigation, International Journal of Materials Research106 (2015), No. 5, pp. 52152610.3139/146.111206Search in Google Scholar

23 S.Yuvaraj, R.Malayalamurthi, K. V.Raja: Assessment of the contact behavior of a soft hemispherical finger tip in curved profile grasping, International Journal of Materials Research107 (2016), No. 9, pp. 77778210.3139/146.111410Search in Google Scholar

24 ANSYS 11.0 Documentation, ANSYS Inc, USA(2008)Search in Google Scholar

25 R. W.Ogden: Recent advances in the phenomenological theory of rubber elasticity, Rubber Chemistry and Technology59 (1986), No. 3, pp. 36138310.5254/1.3538206Search in Google Scholar

26 R. W.Ogden: Non-linear elastic deformations, Dover Publication, New York, USA (1997)Search in Google Scholar

27 K. V.Raja, R.Malayalamurthi: Assessment on assorted hyper-elastic material models applied for large deformation soft finger contact problems, International journal of mechanics and Materials in Design7 (2011), No. 4, pp. 29930510.1007/s10999-011-9167-1Search in Google Scholar

28 C. R.Siviour, W. G.Proud, D. A.Salisbury, R. E.Winter: High strain rate compressive behaviour of a Silicone Elastomer, Proceedings of the XIth International Congress and Exposition, Society for Experimental Mechanics S, USA1 (2008), No. 1, pp. 407413Search in Google Scholar

29 N. F. A.Manan, M. H. M.Ramli, M. N. A. A.Patar, C.Holt, S.Evans, M.Chizari, J.Mahmud: Determining hyperelastic parameters of human skin using 2D finite element modelling and simulation, In Humanities, Science and Engineering Research, IEEE, Malaysia1 (2008), No. 1, pp. 80580910.1109/SHUSER.2012.6268996Search in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111229/html
Scroll to top button