Home Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
Article
Licensed
Unlicensed Requires Authentication

Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality

  • Martin Brandtner-Hafner
Published/Copyright: November 15, 2018
Become an author with De Gruyter Brill

Abstract

For the evaluation of adhesive quality, the prevailing situation shows that standardized mechanical tests do not generate significant quality parameters as they indicate merely the maximum bonding strength of the specimen under investigation. Furthermore, most product data sheets provided by adhesive manufacturers supply only a few technical parameters (i. e. maximum tensile strength), which, from a technical point of view, limits the selection criteria for adhesives. Considering this fact, adhesive selection can be very dangerous when relying on bonding strength alone. This is crucial for industries where human safety has top priority, such as aeronautical, automotive or medicine. Consequently, the present study introduces a new approach, using both fracture mechanics and a special test arrangement for adhesively bonded composites to overcome the above mentioned handicaps. The key benefit of this novel evaluation concept is its ability to monitor the post-cracking behavior of bonded interfaces in a stable and steady manner even for brittle adhesives. This is a major advantage over commonly practiced techniques, both from a mechanical and a fracture mechanical point of view, as they basically tend to measure instability if brittle interfaces come about. To demonstrate this new technique, experiments were conducted on six different adhesives kindly provided by SIKA and MUREXIN. The results found opposite interactions between adhesive bonding strength and fracture resistance, meaning that high tensile strength values do not automatically lead to the best results. Such findings show that the selection of adhesives with the help of fracture analysis seems quite desirable for the future.

Kurzfassung

Bei der Bewertung der Klebstoffqualität zeigt sich, dass standardisierte mechanische Prüfverfahren nur eingeschränkt in der Lage sind, signifikante Qualitätsparameter zu generieren, da sie lediglich die maximale Haftzugfestigkeit der untersuchten Probe angeben. Darüber hinaus liefern die meisten Produktdatenblätter, die von Klebstoffherstellern zur Verfügung gestellt werden, nur wenige technische Parameter, wie z. B. die maximale Zugscherfestigkeit, was die Auswahlkriterien für Klebstoffe aus technischer Sicht einschränkt. Angesichts dieser Tatsachen kann die Klebstoffauswahl sehr gefährlich und riskant sein, wenn man sich nur auf diese Haftzugwerte alleine verlässt. Dies könnte von entscheidender Bedeutung für Branchen sein, in denen die menschliche Sicherheit oberste Priorität hat, beispielsweise in der Luftfahrt, der Automobilindustrie oder der Medizin. Die vorliegende Arbeit stellt einen neuen Ansatz vor, bei dem sowohl Bruchmechanik als auch eine spezielle Versuchsanordnung an geklebten Verbundwerkstoffen zur Überwindung solcher oben genannten Nachteile eingesetzt werden. Der entscheidende Vorteil dieses neuartigen Bewertungskonzepts liegt in der Fähigkeit, das Nachbruchverhalten geklebter Grenzflächen auch für spröde Klebstoffe stabil und stetig zu untersuchen. Dies ist ein immenser Nutzen gegenüber herkömmlichen Prüfverfahren, sowohl aus mechanischer als auch aus bruchmechanischer Sicht, die dazu neigen, instabil zu messen, wenn spröde Grenzflächen ins Spiel kommen. Um diese neue Technik zu demonstrieren, wurden Experimente an sechs unterschiedlichen Klebstoffen durchgeführt, die freundlicherweise von SIKA und MUREXIN zur Verfügung gestellt wurden. Die erzielten Ergebnisse weisen auf entgegengesetzte Wechselwirkungen zwischen der Haftzugfestigkeit und dem Risswiderstand hin, was zeigt, dass hohe Zugfestigkeiten nicht automatisch den besten Klebstoff auszeichnen. Solche Erkenntnisse demonstrieren, dass die Auswahl der Klebstoffe durch die Einbeziehung der Bruchmechanik in Zukunft durchaus erstrebenswert scheint.


*Correspondence Address, Dr. Martin Brandtner-Hafner, Owner and Founder of Fracture Analytics, Raiffeisenstraße 11/4/5, 7072 Mörbisch am See, Austria, E-mail:

Dr. Martin Brandtner-Hafner, born in 1977, completed his PhD in Mechanical Engineering at Vienna University Technology, Vienna, Austria, in 2016. His adviser was Prof. Dr. Elmar K. Tschegg. After his PhD, he founded his own business, Fracture Analytics, which is a privately owned and independent R&D company in Mörbisch am See, Austria. Its main focus is the fracture analytical investigation of adhesives and composites for high-tech industries in terms of risk, quality and performance.


References

1 ASTM D897-08: Standard Test Method for Tensile Properties of Adhesive Bonds, ASTM International, West Conshohocken, USA (2016) 10.1520/D0897-08R16Search in Google Scholar

2 DIN EN 14293: Adhesives – Adhesives for Bonding Parquet to Subfloor – Test Methods and Minimum Requirements, Beuth Verlag, Berlin, Germany (2006), (in German)Search in Google Scholar

3 DIN EN 1465: Adhesives – Determination of Tensile Lap-Shear Strength of Bonded Assemblies, Beuth Verlag, Berlin, Germany (2009), (in German)Search in Google Scholar

4 M.Rasche: Der Zugscherversuch in der Klebtechnik, Adhäsion11 (1990), pp. 3643Search in Google Scholar

5 M. H.Brandtner-Hafner: Interface Fracture Mechanics and Healing of Wood-Adhesive-Composites at mode I, II, III loading, Dissertation, Vienna University of Technology, Vienna, Austria (2016) 10.13140/RG.2.2.21748.04488Search in Google Scholar

6 DIN EN ISO 10365: Adhesives – Designation of Main Failure Patterns, Beuth Verlag, Berlin, Germany (1995) (in German)Search in Google Scholar

7 DVS-Richtlinie 3302: Kleben im Karosseriebau: Bewertung von Bruchbildern, DVS Regelwerk, Klebtechnik, DVS Media GmbH, Düsseldorf, Germany (2017)Search in Google Scholar

8 E. K.Tschegg: Equipment and appropriate specimen shapes for tests to measure fracture values, Patent No. 390328, Austrian Patent Office, Vienna, Austria (1989) (in German)Search in Google Scholar

9 E. K.Tschegg: New equipments for fracture tests on concrete, Materials Testing33 (1991), pp. 33834210.1515/mt-1991-3311-1204Search in Google Scholar

10 G. R.Irwin: Fracture, S. Flügge (Ed.): Elasticity and plasticity, Encyclopedia of Physics, Vol. 3, Springer, Berlin (1958), pp. 55159010.1007/978-3-642-45887-3_5Search in Google Scholar

11 S.Correia, V.Anes, L.Reis: Effect of surface treatment on adhesively bonded aluminium-aluminium joints regarding aeronautical structures, Engineering Failure Analysis84 (2018), pp. 344510.1016/j.engfailanal.2017.10.010Search in Google Scholar

12 B. G. da SilvaSutil, A. H.Susin: Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system, Journal of Applied Oral Science25 (2017), No. 5, pp. 53354010.1590/1678-7757-2016-0500Search in Google Scholar PubMed PubMed Central

13 Y. R.Zhang, Y. R.Luo, J.Zhang, Q.Xiang: The reinforcing mechanism of carbon fiber in composite adhesive for bonding carbon/carbon composites, Journal of Materials Processing Technology211 (2011), pp. 16717310.1016/j.jmatprotec.2010.08.028Search in Google Scholar

14 N.Anagreh, R.Dweiri, S.Masadeh: Characterization of adhesively bonded high strength steel surfaces treated with grit blasting and self-indicating pretreatment (SIP) adhesion mediator, Materials Testing59 (2017), No. 10, pp. 89190210.3139/120.111094Search in Google Scholar

15 P.Weißgraeber, W.Becker: Finite fracture mechanics model for mixed mode fracture in adhesive joints, International Journal of Solids and Structures50 (2013), pp. 2383239410.1016/j.ijsolstr.2013.03.01Search in Google Scholar

16 M.Afendi, T.Teramoto, H. B.Bakri: Strength prediction of epoxy adhesively bonded scarf joints of dissimilar adherends, International Journal of Adhesion and Adhesives31 (2011), pp. 40241110.1016/j.ijadhadh.2011.03.001Search in Google Scholar

17 L. E.Tam, R. M.Pilliar: Fracture toughness of dentin/resin-composite adhesive interfaces, Journal of Dental Research72 (1993), pp. 95395910.1177/00220345930720051801Search in Google Scholar

18 P. S.Watson, S.Clauss, S.Ammann, P.Niemz: Fracture properties of adhesive joints under mechanical stresses, Wood Research58 (2013), pp. 4356Search in Google Scholar

19 P.Gurubaran, M.Afendi, N.Kanasan, I.Haftirman, M.Tasyrif, K. S.Basaruddin: Mixed mode loading fracture toughness of arcan adhesive joint: Effect of surface roughness, Proc. of the International Conference on Mathematics, Engineering and Industrial Applications, AIP Conference Proceedings1775 (2016) 10.1063/1.4965158Search in Google Scholar

20 A. J.Kinloch, B. R. K.Blackman, H.Hadavira: Standardisation of fracture mechanics tests for engineering adhesive joints, Conference paper, Proc. of the 24th Annual Meeting of the Adhesion Society: Adhesion Science for the 21st Century, Williamsburg, Virginia (2001), pp. 4446Search in Google Scholar

21 D. A.Ramantani, M. F. S. Fde Moura, R. D. S. G.Campilho, A. T.Marques: Fracture characterisation of sandwich structures interfaces under mode I loading, Composites Science and Technology70 (2010), pp. 1389139410.1016/j.compscitech.2010.04.018Search in Google Scholar

22 Y.Boutar, S.Naimi, T.Daami, S.Mezlini, L. F. M. daSilva, M. B. S.Ali: Mode I fracture energy of one-component polyurethane adhesive joints as function of bond thickness for the automotive industry, M.Haddar et al. (Eds): Design and Modelling of Mechanical Systems – III, Lecture Notes in Mechanical Engineering, Springer International Publishing, Basel (2018), pp. 39340310.1007/978-3-31966697-6_39Search in Google Scholar

23 S.Budhe, M. D.Banea, S.de Barros, L. F. M. daSilva: An updated review of adhesively bonded joints in composite materials, International Journal of Adhesion and Adhesives72 (2017), pp. 304210.1016/j.ijadhadh.2016.10.010Search in Google Scholar

24 S.Azari, M.Eskandarian, M.Papini, J. A.Schroeder, J. K.Spelt: Fracture load predictions and measurements for highly toughened epoxy adhesive joints, Engineering Fracture Mechanics76 (2009), pp. 2039205510.1016/j.engfracmech.2009.05.011Search in Google Scholar

25 B.Blackman, A.Kinloch: Fracture tests on structural adhesive joints, Journal of the European Structural Integrity Society28 (2001), pp. 22526710.1016/s1566-1369(01)80036-4Search in Google Scholar

26 E. K.Tschegg, T.Krassnitzer: Mode I fracturing properties of epoxy bonding paste, International Journal of Adhesion and Adhesives28 (2008), pp. 34034910.1016/j.ijadhadh.2007.08.006Search in Google Scholar

27 M.Jamek, E. K.Tschegg, O.Stamminger: Fracture-mechanical characterization of parquet-adhesive-screed systems, Journal of Testing and Evaluation39 (2011), pp. 1610.1520/jte103199Search in Google Scholar

28 E. K.Tschegg: Introduction into material science II, Lecture notes, Vienna University of Technology, Vienna (2003)Search in Google Scholar

29 D.Gross, T.Seelig: Bruchmechanik: Mit einer Einführung in die Mikromechanik, 4. Auflage, Springer, Berlin (2010) 10.1007/978-3-642-10196-0Search in Google Scholar

30 M.Kuna: Numerische Beanspruchungsanalyse von Rissen: Finite Elemente in der Bruchmechanik, 2. Auflage, Vieweg + Teubner, Wiesbaden (2010) 10.1007/978-3-8348-9810-4Search in Google Scholar

31 K. O.Edel: Einführung in die bruchmechanische Schadensbeurteilung, Springer Vieweg, Berlin (2015) 10.1007/978-3-662-44264-7Search in Google Scholar

32 G. R.Irwin: Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics24 (1957), pp. 36136410.1115/1.4011547Search in Google Scholar

33 L.Banks-Sills: Interface fracture mechanics: theory and experiment, International Journal of Fracture191 (2015), Issue 1–2, pp. 13114610.1007/s10704-015-9997-1Search in Google Scholar

34 A. A.Griffith: The phenomena of rupture and flow in solids, Philosophical Transactions221 (1920), pp. 16319810.1098/rsta.1921.0006Search in Google Scholar

35 J.Nakayama: Direct measurement of fracture energies of brittle heterogeneous materials, Journal of the American Ceramic Society48 (1965), pp. 58358710.1111/j.1151-2916.1965.tb14677.xSearch in Google Scholar

36 A.Hillerborg: The theoretical basis of a method to determine the fracture energy GF of concrete, Materials and Structures18 (1985), pp. 29129610.1007/bf02472919Search in Google Scholar

37 ASTM D5573-99: Standard Practice for Classifying Failure Modes in Fibre-Reinforced-Plastic (FRP) Joints, ASTM International, West Conshohocken, PA, USA (2012) 10.1520/d5573-99r12Search in Google Scholar

38 G. R.Irwin, J. A.Kies: Critical energy release rate analysis of fracture strength, Welding Journal Research Supplement33 (1954), pp. 193198Search in Google Scholar

39 S.Timoshenko: History of Strength of Materials, McGraw-Hill, New York, USA (1953)Search in Google Scholar

40 ASTM D5528-13: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fibre-Reinforced Polymer Matrix Composites, ASTM International, West Conshohocken, PA, USA (2013) 10.1520/D6671_D6671M-13E01Search in Google Scholar

41 D. O.Adams: Fracture mechanics testing of composites, Composites World2 (2016), No. 1, pp. 1617Search in Google Scholar

42 J. J. L.Morais, M. F. S. F.de Moura, F. A. M.Pereira, J.Xavier, N.Dourado, M. I. R.Dias, J. M. T.Azevedo: The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue, Journal of the Mechanical Behavior of Biomedical Materials3 (2010), pp. 44645310.1016/j.jmbbm.2010.04.001Search in Google Scholar PubMed

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111224/html
Scroll to top button