Torsional behavior of a friction welded martensitic stainless steel
-
Nida Kati
and Sermin Ozan
Abstract
Being widely used in automotive, machinery, aviation and aerospace industry, solid-sate friction welding was applied in this study. AISI 420 martensitic stainless steel, being difficult to be joined by using fusion welding methods, was joined by friction welding. During the welding process, three rotational speeds (R) of 700, 1000 and 1300 rpm were used and other parameters such as friction pressure (Fp), friction time (Ft), upsetting pressure (Up) and upsetting duration (Ud) were kept constant. After the welding process, a torsion test was performed with these samples. The torsion angle (Ta) – torque (T) graphics of the samples were evaluated. Additionally, the fracture surface of the samples was examined by using SEM. As a result, it was observed that the AISI 420 steel was welded without problems by using friction welding. During the torsion tests, the samples fractured outside the welded joint zones. Thus, it was concluded that torsional strength of the welded joints was high.
Kurzfassung
Das Reibschweißen im festen Zustand ist weit verbreitet im Automobil-, Maschinen- und Luftfahrzeugbau und wurde in der diesem Beitrag zugrunde liegenden Studie angewandt. Der hochlegierte martensitische Stahl AISI 420, der schwierig mit Hilfe von Schmelzschweißprozessen zu verbinden ist, wurde reibgeschweißt. Während des Schweißprozesses wurden verschiedene Rotationsgeschwindigkeiten von 700, 1000 und 1300 U·min−1 angewandt und es wurden andere Parameter, wie der Reibdruck, die Reibzeit, der Anfahrdruck und die Anfahrdauer konstant gehalten. Nach dem Schweißprozess wurde mit diesen Proben ein Torsionsversuch durchgeführt. Es wurden die Torsionswinkel-Drehmoment-Grafiken evaluiert. Zusätzlich wurden die Bruchoberflächen mittels REM untersucht. Als ein Ergebnis stellte sich heraus, dass der Stahl AISI 420 mittels Reibschweißen ohne Schwierigkeit verbunden werden kann. Während der Torsionsversuche brachen die Proben außerhalb der Schweißverbindungen. Daraus wurde geschlossen, dass die Torsionsfestigkeit der Schweißverbindungen hoch genug war.
References
1 N.Özdemir: Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed, Materials Letters59 (2005), pp. 2504–2509 DOI: 10.1016/j.matlet.2005.03.034Search in Google Scholar
2 A. Z.Sahin, B. S.Yılbaş, M.Ahmed, J.Nickel: Analysis of the friction welding process in relation to the welding of copper and steel bars, Journal of Materials Processing Technology82 (1998), pp. 127–13610.1016/S0924-0136(98)00032-6Search in Google Scholar
3 S. A.Seregin, V. P.Sabatsev: The friction welding joining of plastically deformed steel welding products, Weld. Prod. (1975), pp. 34–35Search in Google Scholar
4 K. G. K.Murti, S.Sundersan: Parameter optimisation in friction welding dissimilar materials, Metal. Construction (1983), pp. 331–335Search in Google Scholar
5 M.Şahin: Joining with friction welding of high-speed steel and medium-carbon steel, Journal of Materials Processing Technology168 (2005), pp. 202–210 DOI: 10.1016/j.jmatprotec.2004.11.015Search in Google Scholar
6 P.Sathiya, S.Aravindan, A.Noorul Haq: Some experimental investigations on friction welded stainless steel joints, Materials and Design29 (2008), pp. 1099–1109 DOI: 10.1016/j.matdes.2007.06.006Search in Google Scholar
7 K.Yagi, M.Tabuchi, K.Kubo: The influence of fracture mechanisms on the creep crack growth behavior of 316 stainless steel, Engineering Fracture Mechanics57 (1997), pp. 463–473 DOI: S0013-7944(97)00061-1Search in Google Scholar
8 I.Woo, M.Aritoshi, Y.Kikuchi: Metallurgical and mechanical properties of high nitrogen austenitic stainless steel friction weld, ISIJ Internatıonal42 (2002), No. 4, pp. 401–40610.2355/isijinternational.42.401Search in Google Scholar
9 R. L.Klueh, J. F.King: Austenitic stainless steel-ferritic steel weld joint failures, Welding Journal61 (1982), pp. 302–311Search in Google Scholar
10 M.Şahin, H. E.Akata, T.Gülmez: Characterization of mechanical properties in AISI 1040 parts welded by friction welding, Materials Characterization58 (2007), pp. 1033–1038 DOI: 10.1016/j.matchar.2006.09.008Search in Google Scholar
11 S.Dodds, A. H.Jones, S.Cater: Tribological enhancement of AISI 420 martensitic stainless steel through friction-stir processing, Wear302 (2013), pp. 863–877 DOI: 10.1016/j.wear.2013.01.007Search in Google Scholar
12 J. R.Davis: Surface Hardening of Steels: Understanding the Basics, 1st Ed., ASM International, Materials Park, Ohio, USA (2002)Search in Google Scholar
13 B.Mahmoudi, M. J.Torkamany, A. R.Sabour, R.Aghdam, J.Sabbaghzade: Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser, Materials and Design31 (2010), pp. 2553–2560 DOI: 10.1016/j.matdes.2009.11.034Search in Google Scholar
14 M. L.Escudero, J. M.Bello: Laser surface treatment and corrosion behavior of martensitic stainless AISI 420 steel, Materials Science and Engineering158 (1992), pp. 227–233 DOI: 10.1016/0921-5093(92)90012-PSearch in Google Scholar
15 S. H.Baghjari, S. A. A.Akbari Mousavi: Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel, Materials and Design43 (2013), pp. 1–9 DOI: 10.1016/j.matdes.2012.06.027Search in Google Scholar
16 A.Nasery Isfahany, H.Saghafian, G.Borhani: The effect of heat treatment on mechanical properties and corrosion behavior of AISI 420 martensitic stainless steel, Journal Alloys Compounds509 (2011), pp. 3931–3936 DOI: 10.1016/j.jallcom.2010.12.174Search in Google Scholar
17 C.Lippold, J.Kotecki: Welding Metallurgy and Weldability of Stainless Steels, John Wiley and Sons, New York, USA (2005)Search in Google Scholar
18 B.Kurt, N.Orhan, I.Somunkıran, M.Kaya: The effect of austenitic interface layer on microstructure of AISI 420 martensitic stainless steel joined by keyhole PTA welding process, Materials and Design30 (2009), pp. 661–664 DOI: 10.1016/j.matdes.2008.05.027Search in Google Scholar
19 I.Mitelea, V.Budau, C.Craciunescu: Dissimilar friction welding of induction surface-hardened steels and thermochemically treated steels, Journal of Materials Processing Technology212 (2012), pp. 1892–1899 DOI: 10.1016/j.jmatprotec.2012.04.010Search in Google Scholar
20 M.Şahin: Characterization of properties in plastically deformed austenitic stainless steels joined by friction welding, Materials and Design30 (2009), pp. 135–144 DOI: 10.1016/j.matdes.2008.04.033Search in Google Scholar
21 M.Şahin, H. E.Akata: Joining with friction welding of plastically deformed steel, Journal of Materials Processing Technology142 (2003), pp. 239–246 DOI: 10.1016/S0924-0136(03)00589-2Search in Google Scholar
22 R.Winiczenkoa, M.Kaczorowskib: Friction welding of ductile iron with stainless steel, Journal of Materials Processing Technology213 (2013), pp. 453–462 DOI: 10.1016/j.jmatprotec.2012.10.008Search in Google Scholar
23 V. V.Satyanarayana, M. G.Reddy, T.Mohandas: Dissimilar metal friction welding of austenitic–ferritic stainless steels, Journal of Materials Processing Technology160 (2005), pp. 128–137 DOI: 10.1016/j.jmatprotec.2004.05.017Search in Google Scholar
24 T.Ogara, K.Kojoh, H.Nagayoshi: Relation between tensile characteristics and macrostructure of joint in friction welded ductile cast iron, Journal of Japan Foundry Engineering Society77 (2005), pp. 39–43Search in Google Scholar
25 M.Aritoshi, K.Okita: Friction welding of dissimilar metals, Welding International17 (2003), pp. 271–275 DOI: 10.1533/wint.2003.3112Search in Google Scholar
26 N.Özdemir, F.Sarsılmaz, A.Hasçalık: Effect of rotational speed on interface properties of frictional welded AISI-304L to 4340 steel, Materials and Design28 (2007), pp. 301–307 DOI: 10.1016/j.matdes.2005.06.011Search in Google Scholar
27 H.Ateş, M.Türker, A.Kurt: Effect of friction pressure on the properties of friction welded MA956 iron based super alloy, Materials and Design28 (2007), pp. 948–953 DOI: 10.1016/j.matdes.2005.09.015Search in Google Scholar
28 T.Hareyama, T.Nitta, M.Kitagawa, H.Horie: Microstructure and mechanical properties of pipe shaped spheroidal graphite cast iron bonded by friction welding method, Journal of Japan Foundry Engineering Society79 (2007), pp. 146–150Search in Google Scholar
29 M.Nakamura, Y.Sawada, Y. S.Sato: Metallographic study of lapped FSW between ductile cast iron and austenite type stainless steel, Materials Science Forum 638 –642 (2010), pp. 1197–1202Search in Google Scholar
30 H. C.Dey, M.Ashfag, A. K.Bhadhuri, K. P.Rao: Joining of titanium to 304L stainless steel by friction welding, Journal of Materials Processing Technology209 (2009), pp. 5862–5870 DOI: 10.1016/j.jmatprotec.2009.06.018Search in Google Scholar
31 T. Y.Sunay, M.Şahin, S.Altintaş: The effects of casting and forging processes on joint properties in friction-welded AISI 1050 and AISI 304 steels, International Journal of Advanced Manufacturing Technology44 (2009), pp. 68–79 DOI: 10.1007/s00170-008-1810-0Search in Google Scholar
32 H.Seli, A. I.Md. Ismail, E.Rachman, Z. A.Ahmad: Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminum, Journal of Materials Processing Technology210 (2010), pp. 1209–1216 DOI: 10.1016/j.jmatprotec.2010.03.007Search in Google Scholar
33 N.Arivazhagan, S.Singh, S.Prakash, G. M.Reddy: Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc electron beam and friction welding, Materials and Design32 (2011), pp. 3036–3050 DOI: 10.1016/j.matdes.2011.01.037Search in Google Scholar
34 G. M.Reddy, P. V.Ramana: Role of nickel as an interlayer in dissimilar metal friction welding of maraging steel to low alloy steel, Journal of Materials Processing Technology212 (2012), pp. 66–77 DOI: 10.1016/j.jmatprotec.2011.08.005Search in Google Scholar
35 U.Calıgülü, M.Acık, Z.Balaban, N.Katı: The effects of process parameters for joining of AISI 1010-Cu alloys by friction welding, International Journal of Steel Structures15 (2015), pp. 923–931 DOI: 10.1007/s13296-015-1213-7Search in Google Scholar
36 E. S.Kayalı, C.Ensari, F.Dikeç: Mechanical testing of metallic materials, I. T. U.Rectorate, 3rd Ed., No. 1580, Turkey (1996), (in Turkish)Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
- Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
- TIG deposition of Ti on steel substrates using Cu as interlayer
- Examinations of casting cracks in a high alloy steel valve
- Analyzing the diffusion weldability of copper and porcelain
- Torsional behavior of a friction welded martensitic stainless steel
- Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
- Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
- Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
- Strain measurement in concrete using embedded carbon roving-based sensors
- Wear behavior of multilayer coated carbide tools in finish dry hard turning
- Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
- Application of the Taguchi method for surface roughness predictions in the turning process
- Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
- Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
- Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
- TIG deposition of Ti on steel substrates using Cu as interlayer
- Examinations of casting cracks in a high alloy steel valve
- Analyzing the diffusion weldability of copper and porcelain
- Torsional behavior of a friction welded martensitic stainless steel
- Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
- Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
- Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
- Strain measurement in concrete using embedded carbon roving-based sensors
- Wear behavior of multilayer coated carbide tools in finish dry hard turning
- Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
- Application of the Taguchi method for surface roughness predictions in the turning process
- Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
- Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis