Home Analyzing the diffusion weldability of copper and porcelain
Article
Licensed
Unlicensed Requires Authentication

Analyzing the diffusion weldability of copper and porcelain

  • Fatmagul Tolun and Sare Celik
Published/Copyright: August 30, 2016
Become an author with De Gruyter Brill

Abstract

Diffusion welding is one of the exclusive welding methods that provides a perfect material interface after joining of different materials and results in high mechanical properties at high temperatures. In particular, this technique can be used for joining porcelain and metal that have distinctly different features. In this study, diffusion welding of copper to porcelain has been investigated. After the diffusion welding with different parameters, shear tests have been applied to the samples in order to investigate the weld properties and the changes in hardness in the weld region. In order to elucidate the changes in microstructure and composition in the weld region, SEM, EDX and XRD analyses were performed on the samples. As a result, the joining of copper and porcelain materials can successfully be performed by diffusion welding. Samples have the highest weld strength, if they are joined by diffusion welding at 900 °C for 60 min and at 4.5 MPa.

Kurzfassung

Das Diffusionsschweißen stellt ein exklusives Schweißverfahren dar, mit dem eine perfekte Grenzfläche nach dem Verbinden unterschiedlicher Materialien hergestellt werden kann und wodurch hohe mechanische Eigenschaften bei hohen Temperaturen möglich sind. Diese Technik kann insbesondere für das Verbinden von Porzellan und Metall eingesetzt werden, die sehr unterschiedliche Merkmale aufweisen. In der diesem Beitrag zugrunde liegenden Studie wurde das Diffusionsschweißen von Kupfer und Porzellan untersucht. Nach dem Diffusionsschweißen mit unterschiedlichen Parametern wurden Scherversuche durchgeführt, um die Eigenschaften der Schweißverbindungen zu untersuchen, und Härteänderungen in der Schweißverbindung gemessen. Um die Änderungen in der Mikrostruktur und Zusammensetzung in der geschweißten Zone genau festzustellen, wurden REM-, EDX- und XRD-Analysen der Proben durchgeführt. Als ein Ergebnis lässt sich festhalten, dass das Verbinden von Kupfer und Porzellan Materialien erfolgreich mittels Diffusionsschweißen möglich ist. Es zeigte sich, dass die Proben die höchste Festigkeit in der Schweißverbindung aufweisen, wenn sie bei 900 °C über 60 min bei 4,5 bar geschweißt werden.


*Correspondence Address, Associate Prof. Dr. Sare Celik, Department of Mechanical Engineering, Engineering & Architecture Faculty, Balikesir University, 10145 Balikesir, Turkey, E-mail:

Fatmagul Tolun, born 1967, studied Mechanical Engineering at Uludağ University in Bursa, Turkey. She completed her MSc in Mechanical Enigeering at Balikesir University, Turkey, and in 2013, she finished her PhD on diffusion welding at the same university. She is currently working in the Department of Motor Vehicles and Transportation Technologies of Balikesir University and is interested in automotive technologies, special welding methods and materials science.

Sare Celik, born1966, studied Mechanical Engineering at Uludağ University in Bursa, Turkey. She completed her MSc in Mechanical Engineering at the same University, and in 1996, she finished her PhD on diffusion welding at Balikesir University, Turkey. She is currently working as Associate Professor in the Department of Mechanical Engineering of Balikesir University and is interested in special welding methods, materials science and microstructure.


References

1 F.Tolun: Examination and Analysis of Joinability of Copper and Porcelain Materials by Diffusion Bonding, PhD Thesis, Balikesir University, Balikesir, Turkey (2013)Search in Google Scholar

2 S.Celik, D.Günes: Continuous drive friction welding of Al/SiC composite and AISI 1030, Welding Journal91 (2012), pp. 222228Search in Google Scholar

3 A.Ustinov, Y.Falchenko, T.Melnichenko, A.Shishkin, G.Kharchenko, L.Petrushinets: Diffusion welding of aluminium alloy strengthened by Al2O3 particles through an Al/Cu multilayer foil, Journal of Materials Processing Technology213 (2013), pp. 543552 DOI: 10.1016/j.jmatprotec.2012.11.012Search in Google Scholar

4 S.Celik, I.Ay, N.Otmanboluk: Diffusion bonding of pure copper and aluminium in argon gas atmosphere, Practical Metallography34 (1997), No. 8, pp. 41742910.1515/pm-1997-340807Search in Google Scholar

5 O.Akselsen: Review diffusion bonding of ceramics, Journal of Materials Science27 (1992), pp. 569579 DOI: 10.1007/BF00554019Search in Google Scholar

6 M. A.Martinez, J.Rodriguez, C.Navarro, R.Cortes, V.Sanchez: Welding of dense alumina and aluminium by plastic deformation and diffusion, Journal of Materials Science27 (1992), pp. 4230423610.1007/BF01105132Search in Google Scholar

7 H. J.Liu, J. C.Feng, Y. Y.Qian: Interface structure and formation mechanism of diffusion bonded joints of Si-C ceramic to TiAl-based alloy, Scripta Materialia43 (2000), No. 1, pp. 4953 DOI: 10.1016/S1359-6462(00360-2Search in Google Scholar

8 S. B.Sinnott, E. C.Dickey: Ceramic/metal interface structures and their relationship to atomic and meso-scale properties, Materials Science and Engineering43 (2003), No. 1–2, pp. 159 DOI: 10.1016/j.mser.2003.09.001Search in Google Scholar

9 Y.Zhang, D.Feng, Z. Y.He, X. C.Chen: Progress in joining ceramics to metals, Journal of Iron and Steel Research International13 (2006), No. 2, pp. 15 DOI: 10.1016/S1006-706X(06)60032-0Search in Google Scholar

10 M.Aydın, O.San, C.Ozgur: Fabrication of cartridge ceramic filters by diffusion filters, Proc. of the Conf. TÜBİTAK (2007), Project No.: 106M147Search in Google Scholar

11 M. I.Barrena, L.Matesanz, J. M.Gómez de Salazar: Al2O3/Ti6Al4V diffusion bonding joints using Ag-Cu interlayer, Materials Characterization60 (2009), No. 11, pp. 12631267 DOI: 10.1016/j.matchar.2009.05.007Search in Google Scholar

12 Z.Zhong, T.Hinoki, H. C.Jung, Y. H.Park, A.Kohyama: Microstructure and mechanical properties of diffusion bonded SiC/steel joint using W/Ni interlayer, Materials & Design31 (2010), No. 3, pp. 10701076 DOI: 10.1016/j.matdes.2009.09.049Search in Google Scholar

13 B.Serier, B. B.Bouiadjra, M.Belhouari, D.Treheux: Experimental analysis of the strength of silver–alumina junction elaborated at solid state bonding, Materials & Design32 (2011), No. 7, pp. 37503755 DOI: 10.1016/j.matdes.2011.03.047Search in Google Scholar

14 M. L.Hattali, S.Valette, F.Ropital, N.Mesrati, D.Treheux: Interfacial behavior on Al2O3/HAYNES® 214™ joints fabricated by solid state bonding technique with Ni or Cu-Ni-Cu interlayers, Journal of the European Ceramic Society32 (2012), No. 10, pp. 22532265 DOI: 10.1016/j.jeurceramsoc.2012.01.36Search in Google Scholar

15 X.Yuan, T.Tang, Y.Deng, J.Luo, G.Sheng: Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer, Materials and Design52 (2013), pp. 359366 DOI: 10.1016/j.jmatprotec.2012.11.012Search in Google Scholar

16 M.Jafarian, A.Khodabandeh, S.Manafi: Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer, Materials and Design65 (2015), pp. 160164 DOI: 10.1016/j.matdes.2013.05.057Search in Google Scholar

17 R.Ferro, A.Saccao: Intermetallic Chemistry, Pergamon Materials Series, Elsevier, UK (2008)Search in Google Scholar

18 N. F.Kazakov: Diffusion Bonding of Materials, Pergamon Press, Oxford, UK (1985)10.1016/B978-0-08-032550-7.50008-4Search in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110920/pdf?lang=en
Scroll to top button