Home Application of the Taguchi method for surface roughness predictions in the turning process
Article
Licensed
Unlicensed Requires Authentication

Application of the Taguchi method for surface roughness predictions in the turning process

  • Sabri Ozturk
Published/Copyright: August 30, 2016
Become an author with De Gruyter Brill

Abstract

This work is concentrates on the experimental and analytical study of 7075-T6 aluminum alloys in turning operations. The results are analyzed in terms of surface roughness of the workpiece machined using carbide inserts. Taguchi's experimental design method and analysis of variance (ANOVA) are employed to analyze the effect of cutting parameters on surface finish values. It is demonstrated by the experiments that feed rate affects the surface quality more than the depth of cut and cutting speed. The correlations between the factors and surface roughness are determined by multivariable regression analysis which was developed to predict the surface roughness using the test data. Multivariable regression and prediction used with Taguchi results are compared using statistical methods. Taguchi method gives an approximation with 1.15 % error and produces the better results compared to multivariable regression. Experimental study shows that an increase in feed rate causes adhesion of the aluminum on the tool insert. The amount of stuck aluminum adversely affects the quality of the surface.

Kurzfassung

Die diesem Beitrag zugrunde liegenden Forschungsarbeiten beschäftigen sich mit der experimentellen und analytischen Untersuchung von 7075-T6 Aluminiumlegierungen während des Drehprozesses. Die Ergebnisse werden anhand der Oberflächenrauheit des Werkstückes analysiert, das mit Carbideinsetzen bearbeitet wurde. Es wurden das Experimentdesignverfahren nach Taguchi und eine Varianzanalyse (ANOVA) angewandt, um den Effekt der Schneidparameter auf die Werte des Oberflächenfinish zu analysieren. Es zeigte sich anhand der Experimente, dass die Vorschubrate die Oberflächenqualität stärker beeinflusst, als die Schnitttiefe und die Schnittgeschwindigkeit. Die Korrelation zwischen den Faktoren und der Oberflächenrauheit wurde mittels Multivariablen-Regressionsanalyse bestimmt. Das Multivariablen-Regressionsmodell und die Taguchi-Ergebnisse wurden so entwickelt, dass aus den Versuchsdaten die Oberflächenrauheit vorhergesagt werden kann. Die Multivariablen-Regression und die Vorhersage basierend auf den Taguchi-Ergebnissen wurden mittels statistischer Methoden verglichen. Das Taguchi-Verfahren ermöglicht eine Näherung mit einem Fehler von 1,15 % und ergibt die besseren Resultate im Vergleich zur Multivariablen-Regression. Die experimentelle Studie zeigt, dass eine Erhöhung der Vorschubrate eine Adhäsion des Aluminiums auf dem Werkzeugeinsatz verursacht. Die Oberflächenqualität wird durch die Menge des festgebackenen Aluminiums nachteilig beeinflusst.


*Correspondence Address, Dr. Sabri Ozturk, Department of Mechanical Engineering, Golkoy campus, Abant Izzet Baysal University, Bolu 14280, Turkey, E-mail:

Dr. Sabri Ozturk completed his BSc and MSc degrees at Yıldız Technical University in Istanbul, Turkey. He also received his PhD in Mechanical Engineering from that university in 2009. Throughout his studies from 2003 to 2012, he was working as an engineer with the Erdemir Iron and Steel Company in Zonguldak, Turkey. Currently, he is pursuing further studies in the Department of Mechanical Engineering of Abant Izzet Baysal University in Bolu, Turkey.


References

1 ASM Handbook Metals Handbook Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM, Materials Park, Ohio, USA (1990)Search in Google Scholar

2 E. A.De Bartolo, B. M.Hillberry: A model of initial flaw sizes in aluminium alloys, International Journal of Fatigue23 (2001), pp. 7986 DOI: 10.1016/S0142-1123(01)00122-0Search in Google Scholar

3 J.-Q.Su, T. W.Nelson, R.Mishra, M.Mahoney: Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Materialia51 (2003), pp. 713729 DOI: 10.1016/S1359-6454(02)00449-4Search in Google Scholar

4 E. A.Starke, Jr., J. T.Staley: Application of modern aluminium alloys to aircraft, Progress in Aerospace Sciences32 (1995), pp. 131172 DOI: 10.1016/0376-0421(95)00004-6Search in Google Scholar

5 A.Heinz, C.Keidel, S.Moldenhauer, R.Benedictus, W. S.Miller: Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering: A280 (2000), pp. 102107 DOI: 10.1016/S0921-5093(99)00674-7Search in Google Scholar

6 J. P.Immarigeon, R. T.Holt, A. K.Koul, L.Zhao, W.Wallace, J. C.Beddoes: Lightweight materials for aircraft applications, Materials Characterization35 (1995), pp. 4167 DOI: 10.1016/1044-5803(95)00066-6Search in Google Scholar

7 R. K.Bhushan: Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites, Journal of Cleaner Production39 (2013), pp. 242254 DOI: 10.1016/j.jclepro.2012.08.008Search in Google Scholar

8 M.Nalbant, H.Gökkaya, G.Sur: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & Design28 (2007), pp. 13791385 DOI: 10.1016/j.matdes.2006.01.008Search in Google Scholar

9 H.Oktem, T.Erzurumlu, F.Erzincanli: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Materials & Design27 (2006), pp. 735744 DOI: 10.1016/j.matdes.2005.01.010Search in Google Scholar

10 C. K.Chang, H. S.Lu: Study on the prediction model of surface roughness for side milling operations, International Journal of Advanced Manufacturing Technology29 (2006), pp. 867878 DOI: 10.1007/s00170-005-2604-2Search in Google Scholar

11 W.Grzesik: A revised model for predicting surface roughness in turning, Wear194 (1996), pp. 143148 DOI: 10.1016/0043-1648(95)06825-2Search in Google Scholar

12 S. C.Lin, M. F.Chang: A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning, International Journal of Machine Tools and Manufacture38 (1998), pp. 763782 DOI: 10.1016/S0890-6955(97)00073-4Search in Google Scholar

13 C. C. A.Chen, W. C.Liu, N. A.Duffie: A surface topography model for automated surface finishing, International Journal of Machine Tools and Manufacture38 (1998), pp. 543550 DOI: 10.1016/S0890-6955(97)00100-4Search in Google Scholar

14 A. K.Ghani, I. A.Choudhury: Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool, Journal of Materials Processing Technology127 (2002), pp. 1722 DOI: 10.1016/S0924-0136(02)00092-4Search in Google Scholar

15 A. E.Diniz, J. C.Filho: Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process, Wear232 (1999), pp. 6775 DOI: 10.1016/S0043-1648(99)00159-3Search in Google Scholar

16 R. K.Bhushan, S.Kumar, S.Das: Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite, International Journal of Advanced Manufacturing Technology50 (2010), pp. 459469 DOI: 10.1007/s00170-010-2529-2Search in Google Scholar

17 A.Manna, B.Bhattacharayya: Influence of machining parameters on the machinability of particulate reinforced Al/SiC-MMC, International Journal of Advanced Manufacturing Technology25 (2005), pp. 850856 DOI: 10.1007/s00170-003-1917-2Search in Google Scholar

18 A.Mansour, H.Abdalla: Surface roughness model for end milling: A semi-free cutting carbon case hardening steel (EN32) in dry condition, Journal of Materials Processing Technology124 (2002), pp. 183190 DOI: 10.1016/S0924-0136(02)00135-8Search in Google Scholar

19 M.Alauddin, M. A.El Baradie, M. S. J.Hashmi: Prediction of tool life in end milling by response surface methodology, Journal of Materials Processing Technology71 (1997), pp. 456465 DOI: 10.1016/S0924-0136(97)00111-8Search in Google Scholar

20 H.Oktem, T.Erzurumlu, H.Kurtaran: Application of response surface methodology in the optimization of cutting conditions for surface roughness, Journal of Materials Processing Technology170 (2005), pp. 1116 DOI: 10.1016/j.jmatprotec.2005.04.096Search in Google Scholar

21 R.Azouzi, M.Guillot: On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion, International Journal of Machine Tools and Manufacture37 (1999), pp. 12011217 DOI: 10.1016/S0890-6955(97)00013-8Search in Google Scholar

22 H. Y.Tsai, C.Chen, S. J.Lou: An in-process surface recognition system based on neural networks in end milling cutting operations, International Journal of Machine Tools and Manufacture39 (1999), pp. 583605 DOI: 10.1016/S0890-6955(98)00053-4Search in Google Scholar

23 W. H.Yang, Y. S.Tarng: Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology84 (1998), pp. 122129 DOI: 10.1016/S0924-0136(98)00079-XSearch in Google Scholar

24 J.Kopac, M.Bahor, M.Sokovic: Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces, International Journal of Machine Tools and Manufacture42 (2002), pp. 707716 DOI: 10.1016/S0890-6955(01)00163-8Search in Google Scholar

25 A.Uysal, M.Altan, E.Altan: Effects of cutting parameters on tool wear in drilling of polymer composite by Taguchi method, International Journal of Advanced Manufacturing Technology58 (2012), pp. 915921 DOI: 10.1007/s00170-011-3464-6Search in Google Scholar

26 M. C.Huang, C. C.Tai: The effective factors in the warpage problem of an injection-molded part with a thin shell feature, Journal of Materials Processing Technology110 (2001), pp. 19 DOI: 10.1016/S0924-0136(00)00649-XSearch in Google Scholar

27 B.Ozcelik, T.Erzurumlu: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm, Journal of Materials Processing Technology171 (2006), pp. 437445 DOI: 10.1016/j.jmatprotec.2005.04.120Search in Google Scholar

28 B.Ozcelik, I.Sonat: Warpage and structural analysis of thin shell plastic in the plastic injection molding, Materials & Design30 (2009), pp. 367375 DOI: 10.1016/j.matdes.2008.04.053Search in Google Scholar

29 C. C.Tsao: Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials, International Journal of Advanced Manufacturing Technology37 (2008), pp. 10611068 DOI: 10.1007/s00170-007-1057-1Search in Google Scholar

30 J. Z.Zhang, J. C.Chen, E. D.Kirby: Surface roughness optimization in an end-milling operation using the Taguchi design method, Journal of Materials Processing Technology184 (2007), pp. 233239 DOI: 10.1016/j.jmatprotec.2006.11.029Search in Google Scholar

31 V. N.Gaitonde, S. R.Karnik, J. P.Davim: Prediction and minimization of delamination in drilling of medium density fiberboard (mdf) using response surface methodology and Taguchi design, Materials and Manufacturing Processes23 (2008), pp. 377384 DOI: 10.1080/10426910801938379Search in Google Scholar

32 V. N.Gaitonde, S. R.Karnik, B. T.Achyutha, B.Siddeswarappa: Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size, International Journal of Advanced Manufacturing Technology34 (2007), pp. 18 DOI: 10.1007/s00170-006-0571-xSearch in Google Scholar

33 S.Ozturk: Application of ANOVA and Taguchi methods for evaluation of the surface roughness of stellite-6 coating material, Materials Testing56 (2014), pp. 10151020 DOI: 10.3139/120.110665Search in Google Scholar

34 A.Duchosal, R.Serra, R.Leroy, H.Hamdi: Numerical optimization of the minimum quantity lubrication parameters by inner canalizations and cutting conditions for milling finishing process with Taguchi method, Journal of Cleaner Production108 (2015), pp. 6571 DOI: 10.1016/j.jclepro.2015.07.126Search in Google Scholar

35 S.Debnath, M. M.Reddy, Q. S.Yi: Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method, Measurement78 (2016), pp. 111119 DOI: 10.1016/j.measurement.2015.09.011Search in Google Scholar

36 O.Güven: Application of the Taguchi method for parameter optimization of the surface grinding process, Materials Testing57 (2015), pp. 4348 DOI: 10.3139/120.110674Search in Google Scholar

37 A.Ülker, U. E.Kocatüfek, S.Sayer, Ç.Yeni: Application of the Taguchi method for the optimization of the strength of polyamide 6 composite hot plate welds, Materials Testing57 (2015), pp. 531542 DOI: 10.3139/120.110741Search in Google Scholar

38 C.Ozay: Investigating the surface roughness after tangential cylindrical grinding by the Taguchi method, Materials Testing56 (2014), pp. 306311 DOI: 10.3139/120.110561Search in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110917/pdf
Scroll to top button