Application of the Taguchi method for surface roughness predictions in the turning process
-
Sabri Ozturk
Abstract
This work is concentrates on the experimental and analytical study of 7075-T6 aluminum alloys in turning operations. The results are analyzed in terms of surface roughness of the workpiece machined using carbide inserts. Taguchi's experimental design method and analysis of variance (ANOVA) are employed to analyze the effect of cutting parameters on surface finish values. It is demonstrated by the experiments that feed rate affects the surface quality more than the depth of cut and cutting speed. The correlations between the factors and surface roughness are determined by multivariable regression analysis which was developed to predict the surface roughness using the test data. Multivariable regression and prediction used with Taguchi results are compared using statistical methods. Taguchi method gives an approximation with 1.15 % error and produces the better results compared to multivariable regression. Experimental study shows that an increase in feed rate causes adhesion of the aluminum on the tool insert. The amount of stuck aluminum adversely affects the quality of the surface.
Kurzfassung
Die diesem Beitrag zugrunde liegenden Forschungsarbeiten beschäftigen sich mit der experimentellen und analytischen Untersuchung von 7075-T6 Aluminiumlegierungen während des Drehprozesses. Die Ergebnisse werden anhand der Oberflächenrauheit des Werkstückes analysiert, das mit Carbideinsetzen bearbeitet wurde. Es wurden das Experimentdesignverfahren nach Taguchi und eine Varianzanalyse (ANOVA) angewandt, um den Effekt der Schneidparameter auf die Werte des Oberflächenfinish zu analysieren. Es zeigte sich anhand der Experimente, dass die Vorschubrate die Oberflächenqualität stärker beeinflusst, als die Schnitttiefe und die Schnittgeschwindigkeit. Die Korrelation zwischen den Faktoren und der Oberflächenrauheit wurde mittels Multivariablen-Regressionsanalyse bestimmt. Das Multivariablen-Regressionsmodell und die Taguchi-Ergebnisse wurden so entwickelt, dass aus den Versuchsdaten die Oberflächenrauheit vorhergesagt werden kann. Die Multivariablen-Regression und die Vorhersage basierend auf den Taguchi-Ergebnissen wurden mittels statistischer Methoden verglichen. Das Taguchi-Verfahren ermöglicht eine Näherung mit einem Fehler von 1,15 % und ergibt die besseren Resultate im Vergleich zur Multivariablen-Regression. Die experimentelle Studie zeigt, dass eine Erhöhung der Vorschubrate eine Adhäsion des Aluminiums auf dem Werkzeugeinsatz verursacht. Die Oberflächenqualität wird durch die Menge des festgebackenen Aluminiums nachteilig beeinflusst.
References
1 ASM Handbook Metals Handbook Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM, Materials Park, Ohio, USA (1990)Search in Google Scholar
2 E. A.De Bartolo, B. M.Hillberry: A model of initial flaw sizes in aluminium alloys, International Journal of Fatigue23 (2001), pp. 79–86 DOI: 10.1016/S0142-1123(01)00122-0Search in Google Scholar
3 J.-Q.Su, T. W.Nelson, R.Mishra, M.Mahoney: Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Materialia51 (2003), pp. 713–729 DOI: 10.1016/S1359-6454(02)00449-4Search in Google Scholar
4 E. A.Starke, Jr., J. T.Staley: Application of modern aluminium alloys to aircraft, Progress in Aerospace Sciences32 (1995), pp. 131–172 DOI: 10.1016/0376-0421(95)00004-6Search in Google Scholar
5 A.Heinz, C.Keidel, S.Moldenhauer, R.Benedictus, W. S.Miller: Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering: A280 (2000), pp. 102–107 DOI: 10.1016/S0921-5093(99)00674-7Search in Google Scholar
6 J. P.Immarigeon, R. T.Holt, A. K.Koul, L.Zhao, W.Wallace, J. C.Beddoes: Lightweight materials for aircraft applications, Materials Characterization35 (1995), pp. 41–67 DOI: 10.1016/1044-5803(95)00066-6Search in Google Scholar
7 R. K.Bhushan: Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites, Journal of Cleaner Production39 (2013), pp. 242–254 DOI: 10.1016/j.jclepro.2012.08.008Search in Google Scholar
8 M.Nalbant, H.Gökkaya, G.Sur: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & Design28 (2007), pp. 1379–1385 DOI: 10.1016/j.matdes.2006.01.008Search in Google Scholar
9 H.Oktem, T.Erzurumlu, F.Erzincanli: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Materials & Design27 (2006), pp. 735–744 DOI: 10.1016/j.matdes.2005.01.010Search in Google Scholar
10 C. K.Chang, H. S.Lu: Study on the prediction model of surface roughness for side milling operations, International Journal of Advanced Manufacturing Technology29 (2006), pp. 867–878 DOI: 10.1007/s00170-005-2604-2Search in Google Scholar
11 W.Grzesik: A revised model for predicting surface roughness in turning, Wear194 (1996), pp. 143–148 DOI: 10.1016/0043-1648(95)06825-2Search in Google Scholar
12 S. C.Lin, M. F.Chang: A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning, International Journal of Machine Tools and Manufacture38 (1998), pp. 763–782 DOI: 10.1016/S0890-6955(97)00073-4Search in Google Scholar
13 C. C. A.Chen, W. C.Liu, N. A.Duffie: A surface topography model for automated surface finishing, International Journal of Machine Tools and Manufacture38 (1998), pp. 543–550 DOI: 10.1016/S0890-6955(97)00100-4Search in Google Scholar
14 A. K.Ghani, I. A.Choudhury: Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool, Journal of Materials Processing Technology127 (2002), pp. 17–22 DOI: 10.1016/S0924-0136(02)00092-4Search in Google Scholar
15 A. E.Diniz, J. C.Filho: Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process, Wear232 (1999), pp. 67–75 DOI: 10.1016/S0043-1648(99)00159-3Search in Google Scholar
16 R. K.Bhushan, S.Kumar, S.Das: Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite, International Journal of Advanced Manufacturing Technology50 (2010), pp. 459–469 DOI: 10.1007/s00170-010-2529-2Search in Google Scholar
17 A.Manna, B.Bhattacharayya: Influence of machining parameters on the machinability of particulate reinforced Al/SiC-MMC, International Journal of Advanced Manufacturing Technology25 (2005), pp. 850–856 DOI: 10.1007/s00170-003-1917-2Search in Google Scholar
18 A.Mansour, H.Abdalla: Surface roughness model for end milling: A semi-free cutting carbon case hardening steel (EN32) in dry condition, Journal of Materials Processing Technology124 (2002), pp. 183–190 DOI: 10.1016/S0924-0136(02)00135-8Search in Google Scholar
19 M.Alauddin, M. A.El Baradie, M. S. J.Hashmi: Prediction of tool life in end milling by response surface methodology, Journal of Materials Processing Technology71 (1997), pp. 456–465 DOI: 10.1016/S0924-0136(97)00111-8Search in Google Scholar
20 H.Oktem, T.Erzurumlu, H.Kurtaran: Application of response surface methodology in the optimization of cutting conditions for surface roughness, Journal of Materials Processing Technology170 (2005), pp. 11–16 DOI: 10.1016/j.jmatprotec.2005.04.096Search in Google Scholar
21 R.Azouzi, M.Guillot: On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion, International Journal of Machine Tools and Manufacture37 (1999), pp. 1201–1217 DOI: 10.1016/S0890-6955(97)00013-8Search in Google Scholar
22 H. Y.Tsai, C.Chen, S. J.Lou: An in-process surface recognition system based on neural networks in end milling cutting operations, International Journal of Machine Tools and Manufacture39 (1999), pp. 583–605 DOI: 10.1016/S0890-6955(98)00053-4Search in Google Scholar
23 W. H.Yang, Y. S.Tarng: Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology84 (1998), pp. 122–129 DOI: 10.1016/S0924-0136(98)00079-XSearch in Google Scholar
24 J.Kopac, M.Bahor, M.Sokovic: Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces, International Journal of Machine Tools and Manufacture42 (2002), pp. 707–716 DOI: 10.1016/S0890-6955(01)00163-8Search in Google Scholar
25 A.Uysal, M.Altan, E.Altan: Effects of cutting parameters on tool wear in drilling of polymer composite by Taguchi method, International Journal of Advanced Manufacturing Technology58 (2012), pp. 915–921 DOI: 10.1007/s00170-011-3464-6Search in Google Scholar
26 M. C.Huang, C. C.Tai: The effective factors in the warpage problem of an injection-molded part with a thin shell feature, Journal of Materials Processing Technology110 (2001), pp. 1–9 DOI: 10.1016/S0924-0136(00)00649-XSearch in Google Scholar
27 B.Ozcelik, T.Erzurumlu: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm, Journal of Materials Processing Technology171 (2006), pp. 437–445 DOI: 10.1016/j.jmatprotec.2005.04.120Search in Google Scholar
28 B.Ozcelik, I.Sonat: Warpage and structural analysis of thin shell plastic in the plastic injection molding, Materials & Design30 (2009), pp. 367–375 DOI: 10.1016/j.matdes.2008.04.053Search in Google Scholar
29 C. C.Tsao: Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials, International Journal of Advanced Manufacturing Technology37 (2008), pp. 1061–1068 DOI: 10.1007/s00170-007-1057-1Search in Google Scholar
30 J. Z.Zhang, J. C.Chen, E. D.Kirby: Surface roughness optimization in an end-milling operation using the Taguchi design method, Journal of Materials Processing Technology184 (2007), pp. 233–239 DOI: 10.1016/j.jmatprotec.2006.11.029Search in Google Scholar
31 V. N.Gaitonde, S. R.Karnik, J. P.Davim: Prediction and minimization of delamination in drilling of medium density fiberboard (mdf) using response surface methodology and Taguchi design, Materials and Manufacturing Processes23 (2008), pp. 377–384 DOI: 10.1080/10426910801938379Search in Google Scholar
32 V. N.Gaitonde, S. R.Karnik, B. T.Achyutha, B.Siddeswarappa: Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size, International Journal of Advanced Manufacturing Technology34 (2007), pp. 1–8 DOI: 10.1007/s00170-006-0571-xSearch in Google Scholar
33 S.Ozturk: Application of ANOVA and Taguchi methods for evaluation of the surface roughness of stellite-6 coating material, Materials Testing56 (2014), pp. 1015–1020 DOI: 10.3139/120.110665Search in Google Scholar
34 A.Duchosal, R.Serra, R.Leroy, H.Hamdi: Numerical optimization of the minimum quantity lubrication parameters by inner canalizations and cutting conditions for milling finishing process with Taguchi method, Journal of Cleaner Production108 (2015), pp. 65–71 DOI: 10.1016/j.jclepro.2015.07.126Search in Google Scholar
35 S.Debnath, M. M.Reddy, Q. S.Yi: Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method, Measurement78 (2016), pp. 111–119 DOI: 10.1016/j.measurement.2015.09.011Search in Google Scholar
36 O.Güven: Application of the Taguchi method for parameter optimization of the surface grinding process, Materials Testing57 (2015), pp. 43–48 DOI: 10.3139/120.110674Search in Google Scholar
37 A.Ülker, U. E.Kocatüfek, S.Sayer, Ç.Yeni: Application of the Taguchi method for the optimization of the strength of polyamide 6 composite hot plate welds, Materials Testing57 (2015), pp. 531–542 DOI: 10.3139/120.110741Search in Google Scholar
38 C.Ozay: Investigating the surface roughness after tangential cylindrical grinding by the Taguchi method, Materials Testing56 (2014), pp. 306–311 DOI: 10.3139/120.110561Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
- Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
- TIG deposition of Ti on steel substrates using Cu as interlayer
- Examinations of casting cracks in a high alloy steel valve
- Analyzing the diffusion weldability of copper and porcelain
- Torsional behavior of a friction welded martensitic stainless steel
- Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
- Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
- Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
- Strain measurement in concrete using embedded carbon roving-based sensors
- Wear behavior of multilayer coated carbide tools in finish dry hard turning
- Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
- Application of the Taguchi method for surface roughness predictions in the turning process
- Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
- Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
- Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
- TIG deposition of Ti on steel substrates using Cu as interlayer
- Examinations of casting cracks in a high alloy steel valve
- Analyzing the diffusion weldability of copper and porcelain
- Torsional behavior of a friction welded martensitic stainless steel
- Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
- Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
- Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
- Strain measurement in concrete using embedded carbon roving-based sensors
- Wear behavior of multilayer coated carbide tools in finish dry hard turning
- Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
- Application of the Taguchi method for surface roughness predictions in the turning process
- Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
- Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis