Home Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Article
Licensed
Unlicensed Requires Authentication

Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis

  • Mehmet Altuğ
Published/Copyright: August 30, 2016
Become an author with De Gruyter Brill

Abstract

The study examines the changes of the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4 V as a result of heat treatment using wire electrical discharge machining, and their effect on machinability. By means of optical microscopy and scanning electron microscopy (SEM), analyses have been performed to determine various characteristics and additionally, microhardness and conductivity measurements have been conducted. Material removal rate (MRR) and wire wear ratio (WWR) values have been determined by using L18 Taguchi test design. The microstructures of the samples have been changed by thermal procedures. Results have been obtained by using the Grey relational analysis (GRA) optimization technique to solve the maximum MRR and minimum WWR values. The best (highest) MRR value is obtained from sample E which was water quenched in dual phase processing. The microstructure of this sample is composed of primary α and α’ phases. The best (lowest) WWR value is obtained from sample A.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wird untersucht, wie mittels des Drahtfunkenerodierens (Wire Electrical Discharge Machining (WEDM)) die mikrostruturellen, mechanischen und Leitfähigkeitscharakteristika der Titanlegierung Ti6Al4 V als Ergebnis der Wärmebehandlung verändert werden, und welche Auswirkungen sie auf die maschinelle Bearbeitbarkeit haben. Es wurden Analysen unter Verwendung von Licht- und Rasterelektronenmikroskopie durchgeführt, um die verschiedenen Charakteristika zu bestimmen. Zusätzlich wurden Mikrohärte- und Leitfähigkeitsmessungen durchgeführt. Die Werte der Materialabtragsrate und der Drahtverschleißrate wurden mittels des L18 Taguchi-Versuchdesigns bestimmt. Die Mikrostruktur der Proben wurde mittels thermischer Verfahren verändert. Die Ergebnisse, die mit der relationalen Grey-Analysetechnik erhalten wurden, wurden verwendet, um die maximalen Werte der Abtragsrate und der Verschleißrate zu ermitteln. Der beste bzw. höchste Wert der Abtragsrate ergab sich für die Probe E, bei der ein Wasserabschrecken in dem zweiphasigen Prozess angewandt wurde. Die Mikrostruktur dieser Probe besteht aus primären α- und α’-Phasen. Die beste bzw. niedrigste Verschleißrate ergab sich für die Probe A.


*Correspondence Address, Assist. Prof. Dr. Mehmet Altuğ, Department of Machine and Metal Technologies, Malatya Vocational High School, Inonu University, Inönü cd. No. 192/7, Malatya, Turkey, E-mail:

Assist. Prof. Dr. Mehmet Altuğ, born 1978, received his BSc from University of Gazi, Faculty of Technical Education, Ankara, Turkey in 2002 and his MSc in 2003. In 2010, he completed his PhD at the same university and since 2011, he has been working as Assistant Professor at Inonu University, Malatya, Turkey. His research areas include WEDM, rapid prototyping, manufacturing technology, production techniques, Taguchi method and artificial neural networks as well as the genetic algorithm.


References

1 A.Hascalık, U.Caydas: Experimental study of wire electrical discharge machining of AISI D5 tool steel, Journal of Materials Processing Technology, 148 (2004), pp. 362367 DOI: 10.1016/j.jmatprotec.2004.02.048Search in Google Scholar

2 A.Hascalık, U.Caydas: A comparative study of surface integrity of Ti6Al4 V alloy machined by EDM and AECG, Journal of Materials Processing Technology190 (2007), pp. 173180 DOI: 10.1016/j.jmatprotec.2007.02.048Search in Google Scholar

3 A.Hascalık, U.Caydas: Electrical discharge machining of titanium alloy (Ti6Al4V), Applied Surface Science253 (2007), pp. 90079016 DOI: 10.1016/j.apsusc.2007.05.031Search in Google Scholar

4 J.Singh, S.Sharma: Effects of process parameters on material removal rate and surface roughness in WEDM of H13 tool steel, International Journal of Current Engineering and Technology3 (2013), No. 5, pp. 18521857Search in Google Scholar

5 A.Ikram, N. A.Mufti, M. Q.Saleem, A. R.Khan: Parametric optimization for surface roughness, kerf and MRR in wire electrical discharge machining (WEDM) using Taguchi design of experiment, Journal of Mechanical Science and Technology27 (2013), No. 7, pp. 21332141 DOI: 10.1007/s12206-013-0526-8Search in Google Scholar

6 N.Tosun, C.Cogun, G.Tosun: A study on kerf and materials removal rate in wire electrical discharge machining based on Taguchi method, Journal of Materials Processing Technology152 (2004), pp. 316322 DOI: 10.1016/j.jmatprotec.2004.04.373Search in Google Scholar

7 A.Shah, N. A.Mufti, D.Rakwal, E.Bamberg: Material removal rate, kerf, and surface roughness of tungsten carbide machined with wire electrical discharge machining, Journal of Materials Engineering and Performance20 (2011), No. 1, pp. 7176 DOI: 10.1007/s11665-010-9644-ySearch in Google Scholar

8 S. S.Mahapatra, A.Patnaik: Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method, The International Journal of Advanced Manufacturing Technology34 (2007), No. 9–10, pp. 911925 DOI: 10.1007/s00170-006-0672-6Search in Google Scholar

9 R.Ramakrishnan, L.Karunamoorthy: Multi response optimization of wire EDM operations using robust design of experiments, The International Journal of Advanced Manufacturing Technology29 (2006), pp. 105112 DOI: 10.1007/s00170-004-2496-6Search in Google Scholar

10 K. V.Meena, M. S.Azad: Grey relational analysis of micro EDM machining of Ti6Al4 V alloy, Materials and Manufacturing Processes27 (2012), pp. 973977 DOI: 10.1080/10426914.2011.610080Search in Google Scholar

11 B.Jabbaripour, M. H.Sadeghi, S. H.Faridvand, M. R.Shabgard: Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti6Al4V, Machining Science and Technology16 (2012), pp. 419444 DOI: 10.1080/10910344.2012.698971Search in Google Scholar

12 N.Tosun, C.Cogun: An Investigation on wire wear in WEDM, Journal of Materials Processing Technology134 (2003), pp. 273278 DOI: 10.1016/S0924-0136(02)01045-2Search in Google Scholar

13 N.Natarajan, R. M.Arunachalam: Optimization of micro EDM with multiple performance characteristics using Taguchi method and Grey relations analysis, Journal of Scientific & Industrial Research70 (2011), pp. 500505Search in Google Scholar

14 A.Goswami, J.Kumar: Investigation surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method, Engineering Science and Technology, an International Journal71 (2014), pp. 173184 DOI: 10.1016/j.jestch.2014.05.002Search in Google Scholar

15 A.Kumar, V.Kumar, J.Kumar: Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process, The International Journal of Advanced Manufacturing Technology68 (2013), pp. 26452668 DOI: 10.1007/s00170-013-4861-9Search in Google Scholar

16 J. T.Huang, Y. S.Liao: Optimization of machining parameters of wire-EDM based on Grey relational and statistical analyses, International Journal of Production Research41 (2003), No. 8, pp. 17071720 DOI: 10.1080/1352816031000074973Search in Google Scholar

17 K. T.Chiang, F. P.Chang: Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using Grey relational analysis, Journal of Materials Processing Technology180 (2006), pp. 96101 DOI: 10.1016/j.jmatprotec.2006.05.008Search in Google Scholar

18 K.Jangra, S.Grovera, A.Aggarwalb: Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using Grey relational analysis along with Taguchi method, International Journal of Industrial Engineering Computations2 (2011), pp. 479490 DOI: 10.5267/j.ijiec.2011.04.005Search in Google Scholar

19 J.Cai, F.Li, T.Liu, B.Chen: Investigation of mechanical behavior of quenched Ti6Al4 V alloy by microindentation, Materials Characterization62 (2011), pp. 287293 DOI: 10.1016/j.matchar.2011.01.011Search in Google Scholar

20 X.Liu, C.Tan, J.Zhang, F.Wang, H.Cai: Correlation of adiabatic shearing behavior with fracture in Ti6Al4 V alloys with different microstructures, International Journal of Impact Engineering36 (2009), pp. 11431149 DOI: 10.1016/j.ijimpeng.2008.12.007Search in Google Scholar

21 L.He, A. D.Manshadi, R. J.Dippenaar: The evolution of microstructure of Ti6Al4 V alloy during concurrent hot deformation and phase transformation, Materials Science and Engineering A549 (2012), pp. 163167 DOI: 10.1016/j.msea.2012.04.025Search in Google Scholar

22 M.Altug, M.Erdem, C.Ozay: Experimental investigation of kerf of Ti6Al4 V exposed to different heat treatment processes in WEDM and optimization of parameters using genetic algorithm, The International Journal of Advanced Manufacturing Technology78 (2015), pp. 15731583 DOI: 10.1007/s00170-014-6702-xSearch in Google Scholar

23 M. T.Jovanovic, S.Tadic, S.Zec, Z.Miskovic, I.Bobic: The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti6Al4 V alloy, Materials and Design27 (2006), pp. 192199 DOI: 10.1016/j.matdes.2004.10.017Search in Google Scholar

24 İ.Katzarov, S.Malinov, W.Sha: Finite element modeling of the morphology of β to α phase transformation in Ti6Al4 V alloy, Metallurgical and Materials Transactions A33 (2002), pp. 10271040 DOI: 10.1007/s11661-002-0204-4Search in Google Scholar

25 B. B.Singh, G.Sukumar, A.Bhattacharjee, K. S.Kumar, T. B.Bhat, A. K.Gogia: Effect of heat treatment on ballistic impact behavior of Ti6Al4 V against 7.62 mm deformable projectile, Materials and Design36 (2012), pp. 640649 DOI: 10.1016/j.matdes.2011.11.030Search in Google Scholar

26 H.Chandler: Heat Treater's Guide Practices and Procedurs for Nonferrous Alloys, ASM International, Ohio, USA (2006)Search in Google Scholar

27 M. J.Donachie: Titanium – A Technical Guide, The Material Information Society: Second Edition, ASM International, Ohio, USA (2000)10.31399/asm.tb.ttg2.9781627082693Search in Google Scholar

28 R.Ding, Z. X.Guo, A.Wilson: Microstructural evolution of a Ti6Al4 V alloy during thermo mechanical processing, Materials Science and Engineering A327 (2002), pp. 233245 DOI: 10.1016/S0921-5093(01)01531-3Search in Google Scholar

29 L.Zeng, T. R.Bieler: Effects of working heat treatment and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti6Al4 V wire, Materials Science and Engineering A392 (2005), pp. 403414 DOI: 10.1016/j.msea.2004.09.072Search in Google Scholar

30 L. J.Huang, L.Geng, H. Y.Xu, H. X.Peng: In situ TiC particles reinforced Ti6Al4 V matrix composite with a network reinforcement architecture, Materials Science and Engineering A528 (2011), pp. 28592862 DOI: 10.1016/j.msea.2010.12.046Search in Google Scholar

31 W.Sha, S.Malinov: Titanium Alloys: Modelling of Microstructure Properties and Applications, CRC Press, Elsevier Store, USA (2009)10.1533/9781845695866Search in Google Scholar

32 L.Ge, N.Tian, Z.Lu, C.You: Influence of the surface nanocrystallization on the gas nitriding of Ti6Al4 V alloy, Applied Surface Science286 (2013), pp. 412416 DOI: 10.1016/j.apsusc.2013.09.105Search in Google Scholar

33 R.Bobbili, V.Madhu, A. K.Gogia: Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel, Materials and Manufacturing Processes28 (2013), pp. 364368 DOI: 10.1080/10426914.2012.736661Search in Google Scholar

34 M. K.Pradhan: Optimization of MRR, TWR and surface roughness of EDMed D2 steel using an integrated approach of RSM, GRA and entropy measurement method, International Conference on Energy Efficient Technologies for Sustainability (IEETS), Nagercoil, India (2013), pp. 865869 DOI: 10.1109/ICEETS.2013.6533499Search in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110916/pdf
Scroll to top button