Home Strain measurement in concrete using embedded carbon roving-based sensors
Article
Licensed
Unlicensed Requires Authentication

Strain measurement in concrete using embedded carbon roving-based sensors

  • Till Quadflieg , Thomas Gries and Oleg Stolyarov
Published/Copyright: August 30, 2016
Become an author with De Gruyter Brill

Abstract

This paper presents the results of the application of carbon rovings as strain sensors for measuring the strain in concrete. In this work, three types of electrically conductive carbon roving with different characteristics were used. The possibility of using carbon rovings as a strain sensor is demonstrated via measurements in tensile and four point bending tests. The experimental setups and methods for measuring the electrical resistance of carbon roving in the roving and concrete are described. The results of the characterization of the electrical behavior as a function of strain of carbon rovings and concrete are presented and discussed. The obtained results indicate that the strain range of carbon rovings optimally corresponds to the strain range of concrete. This characteristic behavior makes the carbon rovings well suited for the use as strain sensors. A good correlation has been found between the electrical resistance-strain curve of the carbon roving and the measurements in the concrete.

Kurzfassung

Diese Veröffentlichung präsentiert die Ergebnisse der Verwendung von Kohlenstofffasern als Dehnungssensor zur Dehnungsmessung im Beton. In der Arbeit werden drei verschiedene Typen von elektrisch leitenden Kohlenstofffasern mit unterschiedlichen Eigenschaften untersucht. Die Möglichkeit Kohlenstofffasern als Dehnungssensor zu verwenden wird durch Messung in einem Vierpunkt-Biegeversuch demonstriert. Es wird die Messmethode und die Messkonfiguration zur Erfassung des elektrischen Widerstands der Kohlenstofffaser im Betonverbund beschrieben. Die Ergebnisse zur Charakterisierung des elektrischen Widerstandsverhaltens in Abhängigkeit von der Dehnung im Betonverbund werden präsentiert und diskutiert. Die daraus resultierenden Ergebnisse zeigen, dass der Messbereich der Dehnungsmessung mit Kohlenstofffasern gut mit der Dehnung im Betonverbund korrespondiert. Diese Eigenschaft macht Kohlenstofffasern attraktiv für die Verwendung als Dehnungssensor zur Strukturüberwachung in bewehrten Betonbauteilen. Die Ergebnisse verdeutlichen eine gute Korrelation zwischen den elektrisch-mechanischen Verhalten der Faser und der Messung im Betonverbund.


*Correspondence Address, Dipl.-Ing. Till Quadflieg, Composites Division, Institut fuer Textiltechnik (ITA) of RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany, E-mail:

Dipl.-Ing. Till Quadflieg, born 1979, worked in the company Deutsche Telekom AG, Düsseldorf, Germany as a computer specialist for four years and afterwards graduated in Mechanical Engineering at RWTH Aachen University, Germany. Since 2010, he is part of the composites research team at the Institut für Textiltechnik (ITA) of RWTH Aachen University. His areas of expertise are smart textiles and textile–reinforced concrete.

Univ.-Prof. Prof. h.c. Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries, born 1964, studied Mechanical Engineering at RWTH Aachen University, Germany. He also finished his PhD in Mechanical Engineering at the same university and meanwhile he also graduated in Economics. He worked as a manager for textile machinery in the company Lurgi Zimmer AG, Frankfurt, Germany for six years. Since 2001, he is Professor for Textile Engineering and Director of the Institut für Textiltechnik (ITA) of RWTH Aachen University. He is coordinator of interdisciplinary research at RWTH Aachen University and reviewer and consultant. Since 2013, he is Honorary Professor of Lomonosov Moscow State University, Russia.

Dr. Oleg Stolyarov, born 1977, is Associate Professor at Peter the Great St. Petersburg Polytechnic University, Russia. In 2001, he graduated and completed his Doctorate degree at St. Petersburg State University of Technology and Design in 2005, specializing in technical textiles. His research interests include geosynthetics, textile preforming for composites, developing test methods, modeling and prediction of properties and investigation of structure property relations of technical textiles.


References

1 C. R.Cork: Electronic Textiles, Elsevier, Cambridge, UK (2015)Search in Google Scholar

2 C.Owston: Electrical properties of single carbon fibres, Journal of Physics D3 (1970), No. 11, pp. 16151626 DOI: 10.1088/0022-3727/3/11/309Search in Google Scholar

3 C. A.Berg, H.Cumpston, A.Rinsky: Piezoresistance of graphite fibers, Textile Research Journal42 (1972), No. 8, pp. 486489 DOI: 10.1177/004051757204200810Search in Google Scholar

4 S.Błazewicz, B.Patalita, P.Touzain: Study of piezoresistance effect in carbon fibers, Carbon35 (1997), No. 10–11, pp. 16131618 DOI: 10.1016/S0008-6223(97)00120-6Search in Google Scholar

5 X.Wang, D.Chung: Electromechanical behavior of carbon fiber, Carbon35 (1997), No. 5, pp. 706709 DOI: 10.1016/S0008-6223(97)86644-4Search in Google Scholar

6 J. K.Kim, C. S.Park, D. W.Lee, S. M.Cho, C. R.Han: Measurement of the gauge factor of carbon fiber and its application to sensors, Microelectronic Engineering85 (2008), No. 5–6, pp. 787791 DOI: 10.1016/j.mee.2008.01.067Search in Google Scholar

7 P. W.Chen, D. D. L.Chung: Carbon fiber reinforced concrete as an electrical contact material for smart structures, Smart Materials and Structures2 (1993), No. 3, pp. 181188 DOI: 10.1088/0964-1726/2/3/006Search in Google Scholar

8 P. W.Chen, D. D. L.Chung: Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection, Smart Materials and Structures, 2 (1993), No. 1, pp. 2230 DOI: 10.1088/0964-1726/2/1/004Search in Google Scholar

9 P. W.Chen, D. D. L.Chung: Carbon fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading, Journal of the American Ceramic Society78 (1995), No. 3, pp. 816818 DOI: 10.1111/j.1151-2916.1995.tb08254.xSearch in Google Scholar

10 M.Chiarello, R.Zinno: Electrical conductivity of self-monitoring CFRC, Cement and Concrete Composites27 (2005), No. 4, pp. 463469 DOI: 10.1016/j.cemconcomp.2004.09.001Search in Google Scholar

11 D. D. L.Chung: Piezoresistive cement-based materials for strain sensing, Journal of Intelligent Material Systems and Structures13 (2002), No. 9, pp. 599609 DOI: 10.1106/104538902031861Search in Google Scholar

12 D. D. L.Chung: Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon50 (2012), No. 9, pp. 33423353 DOI: 10.1016/j.carbon.2012.01.031Search in Google Scholar

13 F.Azhari, N.Banthia: Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing, Cement and Concrete Composites34 (2012), No. 7, pp. 866873 DOI: 10.1016/j.cemconcomp.2012.04.007Search in Google Scholar

14 Y.Goldfeld, O.Rabinovitch, B.Fishbain, T.Quadflieg, T.Gries: Sensory carbon fiber based textile-reinforced concrete for smart structures, Journal of Intelligent Material Systems and Structures27 (2016), No. 4, pp. 469489 DOI: 10.1177/1045389X15571385Search in Google Scholar

15 Y.Goldfeld, S.Ben-Aarosh, O.Rabinovitch, T.Quadflieg, T.Gries: Integrated self-monitoring of carbon based textile reinforced concrete beams under repeated loading in the un-cracked region, Carbon98 (2016), No. 3, pp. 238249 DOI: 10.1016/j.carbon.2015.10.056Search in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110913/pdf
Scroll to top button