Home TIG deposition of Ti on steel substrates using Cu as interlayer
Article
Licensed
Unlicensed Requires Authentication

TIG deposition of Ti on steel substrates using Cu as interlayer

  • Ion Mitelea , Ion Dragoş Uţu , Simona Cutean and Corneliu Marius Crăciunescu
Published/Copyright: August 30, 2016
Become an author with De Gruyter Brill

Abstract

The deposition of Ti on steel substrates using a Cu interlayer was experimentally investigated using the tungsten inert gas technique with a mechanized feeding system. First, a Cu layer was deposited on the steel surface before the coating process for the production of the Ti layer. The resulting depositions exhibit a good penetration following the occurrence of two heat affected zones with a dense, compact and free-of-cracks microstructure. The investigations by scanning electron microscopy and by X-ray diffraction showed the formation of compounds in the Ti-Cu system and the absence of chemical combinations between Ti and Fe that can strongly affect the toughness characteristics of the deposited layer. The measurement of the cross-sectional hardness shows a significant increase in the surface compared to that of the substrate.

Kurzfassung

Das Auftragsschweißen von Ti auf Stahlsubstrate unter Verwendung einer Cu-Zwischenlage wurde experimentell untersucht, indem Wolfram-Inertgasschweißen mit einer mechanischen Drahtzufuhr angewandt wurde. Hierzu wurde eine Kupferlage auf die Stahloberfläche vor dem Beschichtungsprozess für die Herstellung der Titanlage aufgebracht. Das so hergestellte mikrostrukturelle System wies eine gute Durchschweißung auf, indem sich die beiden Wärmeeinflusszonen unter Ausbildung eines dichten, kompakten und rissfreien Gefüges formierten. Die Untersuchungen mittels REM und Röntgendiffraktometrie zeigen die Bildung von Komponenten im Ti-Cu-System und keine chemischen Verbindungen zwischen Fe und Ti, die die Zähigkeitseigenschaften der Auftragslagen stark beeinträchtigen können. Die Härtegradienten, die im Querschliff der Proben gemessen wurden, zeigen doppelt so hohe Werte, wie sie auf dem Substrat gemessen wurden.


*Correspondence Address, Dr. Eng. Ion-Dragoş Uţu, Faculty of Mechanical Engineering, Politehnica University Timisoara, Bv. Mihai Viteazu, No.1, RO-300222, Timisoara, Romania, E-mail: ,

Dr. Ion Mitelea, born 1946, graduated from University Politehnica Timisoara, Romania, as Bachelor and PhD and is currently Professor of Materials Science, Materials and Heat Treatments for Welded Structures and Selection and Use of Engineering Materials at the same institution. He has developed remarkable research and teaching activities in Romania and as DAAD fellow at Technical University Aachen, University of Applied Sciences Gelsenkirchen and Technical University Dortmund, Germany.

Dr. Ion Dragoş Uţu, born 1978, graduated from University Politehnica Timisoara, Romania, as Bachelor and PhD, and is currently a lecturer in the Department Materials and Manufacturing Engineering in the same institution being involved in the field of materials science and surface engineering. He has developed remarkable research and teaching activities in Romania, as well as a DAAD and SOCRATES fellow at University of Applied Sciences Gelsenkirchen, Germany.

Dr. Simona Cutean, born 1986, graduated from University Politehnica Timisoara, Romania, as Bachelor and PhD. She is pursuing research and teaching activities in the field of materials science.

Dr. Corneliu Marius Crăciunescu, born 1960, graduated as Bachelor and PhD from Politehnica University Timisoara, Romania and is currently Professor of Materials Science, Materials and Heat Treatments and Failure Metallography. He has pursied teaching and research activities in Romania, as a Fullbright Senior Scholar at University of Maryland, USA, and as a Cencia Scholar at Universidade Nova de Lisboa, Portugal. In the field of materials science, his scientific focus is on phase transitions in advanced materials.


References

1 K. P.Gupta: The Cu-Ni-Ti (copper-nickel-titanium) system, Journal of Phase Equilibria23 (2002), pp. 541547 DOI: 10.1361/105497102770331299Search in Google Scholar

2 T. B.Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, USA (1991)Search in Google Scholar

3 I.Mitelea, C.Groza, C. M.Craciunescu: Pulsed laser processing of dissimilar Ti-6Al4 V and X5CrNi18-10 joints, Journal of Materials and Manufacturing Processes29 (2014), No. 8, pp. 975979 DOI: 10.1080/10426914.2013.822978Search in Google Scholar

4 M.Ghosh, K.Bhanumurthy, G. B.Kale, J.Krishnan, S.Chatterjee: Diffusion bonding of titanium to 304 stainless steel, Journal of Nuclear Materials322, (2003), pp. 235241 DOI: 10.1016/j.jnucmat.2003.07.004Search in Google Scholar

5 N.Kahraman, B.Guelenc, F.Findik: Joining of titanium/stainless steel by explosive welding and effect on interface, Journal of Materials Processing Technology169 (2005), pp. 127133 DOI: 10.1016/j.jmatprotec.2005.06.045Search in Google Scholar

6 A.Durgutlu, B.Gülenç, F.Findik: Examination of copper/stainless steel joints formed by explosive welding, Mater. Des.26 (2005), No. 6, pp. 497507 DOI: 10.1016/j.matdes.2004.07.021Search in Google Scholar

7 A.Winiowski: Mechanical and structural properties of joints of stainless steel and titanium brazed with silver filler metals containing tin, Archives of Metallurgy and Materials55 (2010), No. 4, pp. 9911000 DOI: 10.2478/v10172-010-0001-9Search in Google Scholar

8 C. C.Liu, C. L.Ou, R. K.Shiu: The microstructural observation and wettability study of brazing Ti-6Al-4 V and 304 stainless steel using three braze alloys, Journal of Materials Science37 (2002), pp. 22252235 DOI: 10.1023/A:1015356930476Search in Google Scholar

9 A.El Refaey, W.Tillman: Microstructure and mechanical properties of brazed titanium/steel joints, Journal Mater. Sci.42 (2007), pp. 95539558 DOI: 10.1007/s10853-007-1935-9Search in Google Scholar

10 X.Yue, P.He, J. C.Feng, J. H.Zhang, F. Q.Zhu: Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal, Materials Characterization59 (2008), pp. 17211727 DOI: 10.1016/j.matchar.2008.03.014Search in Google Scholar

11 A.El Refaey, W.Tillman: Characterization of titanium/steel joints brazed in vacuum, Welding Journal87 (2008), No. 5, pp. 113118Search in Google Scholar

12 J. A.van Beek, A. A.Kodentsov, F. J. J.van Loo: Phase equilibria in the Cu-Fe-Ti system at 1123 K, Journal of Alloys and Compounds217 (1995), pp. 97103 DOI: 10.1016/0925-8388(94)01302-XSearch in Google Scholar

13 S.Kundu, S.Chatterjee: Interfacial microstructure and mechanical properties of diffusion-bonded titanium–stainless steel joints using a nickel interlayer, Materials Science and Engineering A425 (2006), pp. 107113 DOI: 10.1016/j.msea.2006.03.034Search in Google Scholar

14 U. K.Mudali, B. M. A.Rao, K.Shanmugam, R.Natarajan, B.Raj: Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel, Journal of Nuclear Materials321 (2003), pp. 4048 DOI: 10.1016/S0022-3115(03)00194-6Search in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110911/pdf
Scroll to top button