Home Machining Parameter Optimization of Bidirectional CFRP Composite Pipe by Genetic Algorithm
Article
Licensed
Unlicensed Requires Authentication

Machining Parameter Optimization of Bidirectional CFRP Composite Pipe by Genetic Algorithm

  • Krishnasamy Vijaykumar , Kavan Panneerselvam and Abdullah Naveen Sait
Published/Copyright: September 28, 2014
Become an author with De Gruyter Brill

Abstract

Composite materials such as fiber-reinforced composites (FRP) are extensively used in today's industries such as aerospace, automotive, and shipping because of their high specific strength and high specific stiffness. In addition, they have good thermal resistance, corrosion resistance, damping resistance, and dimensional stability. But, due to the inhomogeneous composition of these materials, machining of composite materials becomes a major concern in the industry. For the present study, machining was carried out at a CFRP composite pipe with bidirectional carbon fiber. Based on the experimental results, regression analysis was conducted to determine the input-output relationships of the process. A mathematical model was developed to predict the responses, and correlation graphs were plotted. The regression equations were then plotted and the effects of each process parameter on the response were analyzed using the response surface methodology. The process parameters were then optimized using genetic algorithm to yield minimum cutting force and minimum surface roughness.

Kurzfassung

Kompositwerkstoffe, wie zum Beispiel faserverstärkte Komposite (fiber-reinforced composites – FRP) werden sehr häufig in der heutigen Industrie wegen ihrer hohen spezifischen Festigkeit und Steifigkeit verwendet, wie zum Beispiel im Bereich des Flugzeug-, Automobil- und Schhiffbaus. Zusätzlich besitzen sie gute thermische Resistenz, Korrosionsbeständigkeit, Dämpfungsfähigkeit sowie Dimensionsstabilität. Aber auf Grund der inhomogenen Natur dieser Materialien verursacht die maschinelle Bearbeitung von Kompositwerkstoffen erhebliche Probleme in der Industrie. Für die diesem Beitrag zugrunde liegende Studie wurde ein CFRP-Kompositrohr mit bidirektionaler Carbonfaser bearbeitet. Basierend auf den experimentellen Ergebnissen wurde eine Regressionsanalyse ausgeführt, um die Input-Output-Verhältnisse des Prozesses zu bestimmen. Es wurde ein mathematisches Modell zur Vorhersage der Antworten entwickelt sowie Diagramme für die Korrelation aufgestellt. Die Regressionsgleichungen wurden dann aufgetragen und die Effekte jedes Prozessparameters auf die Antwort mittels der Antwort-Oberflächen-Methodik analysiert. Die Prozessparameter wurden dann mittels genetischem Algorithmus optimiert, um die niedrigsten Schnittkräfte und Oberflächenrauheiten zu erreichen.


*Correspondence Address Dr. Abdullah Naveen Sait Department of Mechanical Engineering Chendhuran College of Engineering & Technology Pudukkottai 622 507, India E-mail:

Mr. Krishnasamy Vijaykumar, born 1967, completed his M.Eng. in the year 1994 and B.Eng. in the year 1990 in mechanical engineering. Presently, he is working as head of the Department of Mechanical Engineering at Seshasayee Institute of Technology, Trichy, Tamilnadu, India.

Dr. Abdullah Naveen Sait born on 02.12.1976 obtained Ph.D. in the year 2008, Masters during 2001 and Bachelors in the 1998. Dr. Naveen Sait is carrying research in the field of Materials. Presently he is working with Chendhuran College of Engineering and Technology, Pudukkottai, Tamilnadu, India as Principal.

Dr. Kavan Panneerselvam obtained his Ph.D in the year 2009, Masters during 2003 and Bachelors in the year 1998. Basically, Dr. K. Pannerselvam is a Mechanical Engineer doing extensive research in the field of Advanced Manufacturing. Presently he is working with National Institute of Technology, Trichy, Tamilnadu, India as Assistant Professor in the Department of Production Engineering.


References

1 U. A.Khashaba: Delamination in drilling GFR thermoset composites, Composite Structures63 (2004), No. 3–4, pp. 31332710.1016/S0263-82223(03)00180-6Search in Google Scholar

2 H. T.Lijima: Machinability of glass fiber-reinforced plastics and application of ultrasonic machining, CIRP Annals – Manufacturing Technology37 (1988), No. 1, pp. 939610.1016/S0007-8506(07)61593-5Search in Google Scholar

3 E.Eriksen: Influence of production parameters on the surface roughness of a machined short fiber-reinforced thermoplastic, International Journal of Machine Tools and Manufacture39 (1999), pp. 1611161810.1016/S0890-6955(99)00017-6Search in Google Scholar

4 J. R.Ferreira, N. L.Coppini, G. W. A.Miranda: Machining Optimization in carbon fiber- reinforced composite materials, Journal of Materials Processing Technology92–93 (1999), pp. 13514010.1016/j.procir.2014.04.028Search in Google Scholar

5 M.Rahman, S.Ramakrishna, J. R. S.Prakash, D. C. G.Tan: Machinability study of carbon fiber reinforced composite, Journal of Materials Processing Technology89–90 (1999), pp. 29229710.1016/S0924-0136(99)00040.0Search in Google Scholar

6 K.Palanikumar, L.Karunamoorthy, R.Karthikeyan: Optimizing the machining parameters for minimum surface roughness in turning of GFRP composites using design of experiments, Journal of Material Science and Technology20 (2004), No. 4, pp. 373378Search in Google Scholar

7 J. P.Davim, F.Mata: A new machinability study of GFRP using polycrystalline diamond and cemented carbide (K15) tools, Materials and Design28 (2007), No. 3, pp. 1050105410.1016/j.matdes.2005.09.019Search in Google Scholar

8 J. P.Davim, F.Mata: A new machinability index in turning fiber-reinforced plastics, Journal of Materials Processing Technology170 (2005), No. 1–2, pp. 43644010.1016/j.jmatprotec.2005.05.047Search in Google Scholar

9 N. S.Mohan, A.Ramachandra, S. M.Kulkarni: Influence of process parameters on cutting force and torque during drilling of glass fiber polyester-reinforced composites, Journal of Composite Structures71 (2005), pp. 40741310.1016/j.compstruct.2005.09.039Search in Google Scholar

10 S.Aravindan, A. N.Sait, A. N.Haq: A machinability study of GFRP pipes using statistical techniques, International Journal of Advanced Manufacturing Technology37 (2008), No. 11–12, pp. 1069108110.1007/s00170-007-1055-3Search in Google Scholar

11 A. N.Sait, S.Aravindan, A. N.Haq: Influence of machining parameters on surface roughness of GFRP pipes, Advances in Production Engineering and Management4 (2009), No. 1–2, pp. 4758Search in Google Scholar

12 A. N.Sait, S.Aravindan, A. N.Haq: Investigation on Surface Damages on Machining Hand Lay-Up GFRP Composites, International Journal of Materials Science3 (2008), No. 3, pp. 275288Search in Google Scholar

13 A. N.Sait, A. N.Haq, S.Aravindan: Experimental investigation on machining of filament wound GFRP pipe by cemented carbide (K20) cutting tool, International Journal of Machining and Machinability of Materials3 (2008), No. 3–4, pp. 36438110.1504/IJMMM.2008.020971Search in Google Scholar

14 A. N.Sait: Optimization of machining parameters of GFRP pipes using evolutionary techniques, International Journal of Precision Engineering and Manufacturing11 (2010), No. 6, pp. 89190010.1007/S12541-10-0108-ySearch in Google Scholar

15 V.Gunaraj, N.Murugan: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes, Journal of Materials Processing Technology88 (1999), No. 1–3, pp. 26627510.1016/S0924-0136(98)00405-1Search in Google Scholar

16 N. K.Jain, V. K.Jain, K.Deb: Optimization of process parameters of mechanical type advanced machining processes using genetic algorithm, International Journal of Machine Tools and Manufacture47 (2007), pp. 90091910.1016/j.ijmachtools.2006.08.001Search in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-09-01

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Burst Strength of Composite Cylinders – Assessment of the Type of Statistical Distribution
  5. Effects of Zn/Cu Ratio and Silicon on Microstructure, Mechanical Properties, Tarnish and Corrosion Resistance of As-Cast 940 Silver Alloys
  6. Analysis of the Frequency as an Integral Method for the Testing of Anisotropic 3D Sheet Metal Structure
  7. Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process
  8. The Mechanical and Electrical Properties of the Ternary Bi-Ga-Sb System
  9. Experimental Investigation of the Corrosion Mechanism of Cemented Soils in Magnesium Sulfate Solution
  10. Experimental and Analytical Study of Masonry Constructions Reinforced with Bed Joints
  11. The Fracture Toughness of Fe2B Formed on Boronized AISI 304
  12. Effects of Ferroboron and Ferrochromium Powder Addition on Abrasive Wear Resistance of Fe-Based Hardfacing Coatings
  13. Fabrication of Al/Mg Bimetal Compound Casting by Lost Foam Technique and Liquid-Solid Process
  14. Effects of Si and Zn on Machinability and Wear Resistance of AZ91 and AS91 Magnesium Alloys
  15. DIRECTT-Rekonstruktionen im Vergleich zur gefilterten Rückprojektion
  16. Reduzierung von Missing-Wedge-Artefakten der CT mit DIRECTT
  17. Röntgentomografische Untersuchung eines kommerziellen Lithium-Ionen-Kondensators*
  18. Machining Parameter Optimization of Bidirectional CFRP Composite Pipe by Genetic Algorithm
  19. Investigation of Lost Foam Casted Aluminum Bimetal Microstructures
  20. Taguchi-Based Grey Relation Optimization of Machining Parameters and Cutting Path Strategies in CNC Pocket Milling Operations
  21. Reliable Evaluation of Acceptability of Weld for Final Disposal Based on the Canister Copper Weld Inspection Using Different NDT Methods
  22. Evaluation of the Reliability of NDTesting in Russian Railway Transport
  23. Vorschau/Preview
  24. Vorschau
Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110623/html?lang=en
Scroll to top button