A Study on Wear Testing of Orthopedic Implant Materials in Simulated Body Fluid
-
Erdem Atar
Abstract
In this study, the sliding wear behaviour of the materials utilized in manufacturing of load-bearing orthopedic implants (316 L, Ti6Al4V, and CoCrMo nickel alloys) was examined by a reciprocating wear tester under ceramic-on-metal configuration in a simulated body fluid (SBF). During the tests the generated wear debris were transferred into the SBF and increased its optical density. In accordance with its poor wear resistance, Ti6Al4V alloy provided a large amount of wear debris transfer into the SBF along with the heavy material attachment to the contact surface of the counterface. Dissolution of wear debris led to an increase of the metal ion concentration in the SBFs. Even though few wear debris were generated, trace elements were detected in the SBFs of the 316 L and CoCrMo alloy, besides the main elements.
Kurzfassung
Für die diesem Beitrag zugrunde liegende Studie wurde das Gleitverschleißverhalten von Materialien untersucht, die zur Herstellung von lasttragenden orthopädischen Implantaten verwendet werden (Stahl 316 L, Ti6Al4V und CoCrMo-Legierungen), indem ein pendelartiger Verschleißtest unter Keramik-Metall-Konfiguration in simulierter Körperflüssigkeit (SBF – Simulated Body Fluid) verwendet wurde. Während der Versuche wurde der Abrieb in die SBF transferiert, wodurch deren optische Dichte anstieg. Übereinstimmend mit ihrem geringen Verschleißwiderstand, wurde von der Ti6Al4V-Legierung ein großer Anteil an Abrieb erzeugt und in die SBF übertragen, im Zusammenhang mit dem aufgebrachten schweren Material, das auf die Kontaktfläche der Gegenseite aufgebracht wurde. Die Auflösung des Abriebes führte zu einem Anstieg der Metallionenkonzentration in den Körperflüssigkeiten. Obwohl ein geringerer Abrieb erzeugt wurde, wurden neben den Hauptelementen Spurenelemente in den SBFs bei der Untersuchung des Stahles 316 L und der CoCrMo-Legierung entdeckt.
References
1 B. J.Park, J. D.Bronzino: Biomaterials: Principles and Applications, CRC Press, London (2003)10.1201/9781420040036Search in Google Scholar
2 T.Swee Hin: Engineering Materials For Biomedical Applications, World Scientific Publishing, New Jersey (200410.1142/5673Search in Google Scholar
3 G.Manivasagam, D.Dhinasekaran, A.Rajamanickam: Biomedical implants: Corrosion and its prevention – a review, Recent. Pat. Corros. Sci.2 (2010), pp. 40–54Search in Google Scholar
4 S.P.Patterson, R.H.Daffner, R.A.Gallo: Electrochemical corrosion of metal implants, Am. J. Roentgenol.184 (2005), pp. 1219–1222Search in Google Scholar
5 D.Sharan: The problem of corrosion in orthopedic implant materials, Orthop. Update9 (1999), pp. 1–5Search in Google Scholar
6 I.Gruppa: Characterization of different materials for corrosion resistance under simulated body fluid conditions, Mater. Charact.49 (2002), pp. 73–7910.1016/S1044-5803(02)00320-0Search in Google Scholar
7 J.J.Jacobs, J.L.Gilbert, R.M.Urban: Corrosion of metal orthopedic implants, J. Bone Joint Surg. 80A (1998), pp. 268–282Search in Google Scholar
8 M.B.Nasab, M.R.Hassan: Metallic biomaterials of knee and hip – A review, Trends Biomater. Artif. Organs.24 (2010), No. 1, pp. 68–82Search in Google Scholar
9 P.A.Revell: The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses, J.R. Soc. Interface5 (2008), pp. 1263–127810.1098/rsif.2008.0142Search in Google Scholar PubMed PubMed Central
10 M.Sundfeldt, L.V.Carlsson, C.B.Johansson, P.Thomsen, C.Gretzer: Aseptic loosening, not only a question of wear: A review of different theories, Acta Orthop.77 (2006), No. 2, pp. 177–197Search in Google Scholar
11 J.Alvarado, R.Maldonado, J.Marxuach, R.Otero: Biomechanics of hip and knee prostheses, App. Eng. Mech. Med. (2003), pp. 1–17Search in Google Scholar
12 M.Caicedo, J.J.Jacobs, N.J.Hallab: Inflammatory bone loss in joint replacements: The mechanisms, J. Musculoskelet. Med.26 (2010), pp. 1–7Search in Google Scholar
13 M.Caicedo, J.J.Jacobs, N.J.Hallab: Inflammatory bone loss in joint replacements: The key mediators, J. Musculoskelet. Med.26 (2010), pp. 1–6Search in Google Scholar
14 B.S.Chang, P.R.Brown, A.Sieber, A.Valdevit, K.Tateno, J.P.Kostuik: Evaluation of the biological response of wear debris, Spine J.4 (2004), pp. 239S–244S10.1016/j.spinee.2004.07.014Search in Google Scholar PubMed
15 T.Kokubo, H.Takadama: How useful is SBF in predicting in vivo bone bioactivity, Biomaterials27 (2006), pp. 2907–2915Search in Google Scholar
16 H.Dong, T.Bell: Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear238 (2000), pp. 131–137Search in Google Scholar
17 P.A.Dearnley: A brief review of test methodologies for surface-engineered biomedical implant alloys, Surf. Coat. Technol.198 (2005), pp. 483–49010.1016/j.surfcoat.2004.10.067Search in Google Scholar
18 Y.Yan, A.Neville, D.Dowson, S.Williams, J.Fisher: Tribo-corrosion analysis of wear and metal ion release interactions from metal-on-metal and ceramic-on-metal contacts for the application in artificial hip prostheses, Proc. IMechE 222 Part J: J. Eng. Trib. (2008), pp. 483–492Search in Google Scholar
19 T.Hanawa: Metal ion release from metal implants, Mat. Sci. Eng. C24 (2004), pp. 745–752Search in Google Scholar
20 A.W.Hodgson, S.Mischler, B.V.Rechenberg, S.Virtanen: An analysis of the in vivo deterioration of CoCrMo implants through wear and corrosion, Proc. IMechE, Part H: J. Eng. Med.221 (2007), pp. 291–303Search in Google Scholar
21 W.Brodner, P.Bitzan, V.Meisinger, A.Kaider, F.Gottsauner-Wolf, R.Kotz: Elevated serum cobalt with metal-on-metal articulating surfaces, J. Bone Joint Surg. 79B (1997), pp. 316–321Search in Google Scholar
22 Y.Okazaki, E.Gotoh: Comparision of metal release from various metallic biomaterials in vitro, Biomaterials26 (2005), pp. 11–21Search in Google Scholar
23 N.B.Muhamad, W.F.A.Abdul Majid, M.R.Abdul Kadir: Toxic element released from high and low carbon CoCrMo alloy in vitro, Proc. IECBES (2010), pp. 180–183Search in Google Scholar
24 Y.Okazaki, E.Gotoh: Metal release from stainless steel, Co-Cr-Mo-Ni-Fe and Ni-Ti alloys in vascular implants, Corros. Sci.50 (2008), pp. 3429–3438Search in Google Scholar
25 K.Yang, Y.Ren: Nickel-free austenitic stainless steels for medical applications, Sci. Technol. Adv. Mat.11 (2010), pp. 1–13Search in Google Scholar
26 L.A.Joseph, O.K.Israel, E.J.Edet: Comparative evaluation of metal ions release from titanium and Ti6Al7Nb into bio-fluids, Dent. Res. J.6 (2009), pp. 7–11Search in Google Scholar
27 I.Cvijovic-Alagic, Z.Cvijovic, S.Mitrovic, V.Panic, M.Rakin: Wear and corrosion behaviour of Ti13Nb13Zr and Ti6Al4V alloys in simulated physiological solution, Corros. Sci.53 (2011), pp. 796–808Search in Google Scholar
28 L.S.Morais, G.G.Serra, C.A.Muller, L.R.Andrade, E.F.A.Palermo, C.N.Elias, M.Meyers: Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release, Acta Biomater.3 (2007), pp. 331–339Search in Google Scholar
29 N.J.Hallab, J.J.Jacobs: Biologic effects of implant debris, Bull. NYU Hosp. Jt. Dis. 67(2) (2009), pp. 182–188Search in Google Scholar
30 M.J.Yaszemski, D.J.Trantolo, K.U.Lewandrowski, V.Hasirci, D.E.Altobelli: Biomaterials in Orthopedics, Marcel Dekker, New York (2004)Search in Google Scholar
31 D.C.Hansen: Metal corrosion in the human body: the ultimate bio-corrosion scenario, Electrochem. Soc. Interface (2008), pp. 31–3410.1149/2.F04082IFSearch in Google Scholar
32 R.Singh, N.B.Dahotre: Corrosion degradation and prevention by surface modification of biometallic materials, J. Mater. Sci. Mater. Med.18 (2007), pp. 725–751Search in Google Scholar
33 L.S.Morais, G.G.Serra, C.A.Muller, L.R.Andrade, E.F.A.Palermo, C.N.Elias, M.Meyers: Titanium alloy mini-implants for orthodontic anchorage: Immediate loading and metal ion release, Acta Biomater.3 (2007), pp. 331–339Search in Google Scholar
34 M.Geetha, A.K.Singh, R.Asokamani, A.K.Gogia: Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog. Mater. Sci.54 (2009), pp. 397–425Search in Google Scholar
35 A.Kurella, N.B.Dahotre: Surface Modification for Bioimplants: The Role of Laser Surface Engineering, J. Biomater. Appl.20 (2005), pp. 5–50Search in Google Scholar
36 G.Wang, H.Zreiqat: Functional Coatings of Films for Hard-Tissue applications, Materials3 (2010), pp. 3994–4050Search in Google Scholar
37 A.Bloyce, P.Y.Qi, H.Dong, T.Bell: Surface modification of titanium alloys for combined improvements in corrosion and wear resistance, Surf. Coat. Technol.107 (1998), pp. 125–132Search in Google Scholar
38 X.Liu, P.K.Chu, C.Ding: Surface modification of titanium, titanium alloys and related materials for biomedical applications, Mater. Sci. Eng.R47 (2004), pp. 49–21Search in Google Scholar
39 H.Guleryuz, H.Cimenoglu: Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti6Al4V alloy, Biomaterials25 (2004), pp. 3325–3333Search in Google Scholar
40 F.M.Guclu, H.Cimenoglu, E.S.Kayali: The recrystallization and thermal oxidation behaviour of CP-titanium, Mater. Sci. Eng. C 26 (2006), pp. 1367–1372Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Upgrading of an Ultrasonic Fatigue Testing Machine by Means of Early Stage Damage Detection
- Assessment of Fracture Behaviour under Impact Loading with Simultaneous Recording of Acoustic Emission
- Creep Behaviour of NearEquiatomic Nickel-Titanium Wires
- Ferroelektret-Prüfköpfe für die zerstörungsfreie Prüfung mit Luftultraschall
- A Study on Wear Testing of Orthopedic Implant Materials in Simulated Body Fluid
- Low Frequencies for Cardboard Quality Assurance
- A Crack Identification Approach for Beam-Like Structures under Moving Vehicle using Particle Swarm Optimization
- Assessment of the Residual Strength Thresholds of Composite Pressure Receptacles – Criteria for Hydraulic Load Cycle Testing
- Empirical Correlation for Viscoelastic and Viscoplastic Behaviour of Rock Surfaces under Different Normal Stress Conditions
- Electrolytic Recovery of Tin from Waste Lead Frames: Use of Aqueous HCl Leaching Solution as Electrolyte
- Study of p-6P Molecule Growth by In-Situ and Real-Time Spectroscopic Ellipsometry
- Vorschau/Preview
- Vorschau
- Kalender/Calendar
- Kalender
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Upgrading of an Ultrasonic Fatigue Testing Machine by Means of Early Stage Damage Detection
- Assessment of Fracture Behaviour under Impact Loading with Simultaneous Recording of Acoustic Emission
- Creep Behaviour of NearEquiatomic Nickel-Titanium Wires
- Ferroelektret-Prüfköpfe für die zerstörungsfreie Prüfung mit Luftultraschall
- A Study on Wear Testing of Orthopedic Implant Materials in Simulated Body Fluid
- Low Frequencies for Cardboard Quality Assurance
- A Crack Identification Approach for Beam-Like Structures under Moving Vehicle using Particle Swarm Optimization
- Assessment of the Residual Strength Thresholds of Composite Pressure Receptacles – Criteria for Hydraulic Load Cycle Testing
- Empirical Correlation for Viscoelastic and Viscoplastic Behaviour of Rock Surfaces under Different Normal Stress Conditions
- Electrolytic Recovery of Tin from Waste Lead Frames: Use of Aqueous HCl Leaching Solution as Electrolyte
- Study of p-6P Molecule Growth by In-Situ and Real-Time Spectroscopic Ellipsometry
- Vorschau/Preview
- Vorschau
- Kalender/Calendar
- Kalender