Home Enhanced Grain Orientation in Pb(Zr,Ti)O3 Powder-Modified SrBi2Ta2O9 Ferroelectric Ceramics
Article
Licensed
Unlicensed Requires Authentication

Enhanced Grain Orientation in Pb(Zr,Ti)O3 Powder-Modified SrBi2Ta2O9 Ferroelectric Ceramics

  • Jingsong Liu and Huiqin Li
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

Pb(Zr,Ti)O3 (PZT) powder modified SrBi2Ta2O9 (SBT) ceramics, hereafter called SBT-PZT, were prepared by the solid phase synthesis method. With the aid of atomic force microscopy and x-ray diffractometry, the SBT-PZT ceramics were found to exhibit an enhanced c-axis orientation compared with SBT ceramics. Ferroelectric and dielectric properties of SBT-PZT ceramics were revealed to be anisotropic by relevant measurements. Because of differences in heteropolar valence and ionic radius between SBT and PZT, the PZT may be introduced into SBT as a heterogeneous system and embedded in the SBT grain boundaries. The large differences in crystal structures between SBT and PZT were proposed to be responsible for the SBT-PZT grain orientation mechanism. Obviously, the grain orientation resulted in electrical anisotropies of SBT-PZT ceramic. The internal stress, which was induced by heterogeneous system doping, was considered to affect the polarization reversal of SBT-PZT ceramics.

Kurzfassung

Pb(Zr,Ti)O3 (PZT) Pulver-modifizierte SrBi2Ta2O9 (SBT) Keramiken, im folgenden SBT-PZT genannt, werden mittels der Festphasensynthetik hergestellt. Mit Hilfe der Rasterkraftmikroskopoie und der Röntgendiffratometrie wurde ermittelt, dass SBT-PZT-Keramiken eine C-Achsen-Orientierung gegenüber SBT-Keramiken aufweisen. Die ferroelektrischen und die dielektrischen Eigenschaften von SBT-PZT-Keramiken stelleten sich in den entsprechenden Messungen als anisotrop heraus. Aufgrund des Unterschiedes in der heteropolaren Valenz und dem Ionenradius zwischen SBT und PZT könnte das PZT in das SBT als heterogenes System eingebracht worden sein und in den SBT-Korngrenzen eingelagert sein. Die großen Unterschiede in der Kristallstruktur zwischen SBT und PZT werden als Ursache für den Mechanismus für die SBT-PZT-Kornorientierung angenommen. Offensichtlich führt die Kornorientierung zu den elektrischen Anisotropien der SBT-PZT Keramik. Es wurde angenommen, dass die innere Spannung, die durch das heterogene System-Doping entstanden ist, die Umkehrung der Polarisierung der SBT-PZT-Keramiken beeinflusst.

References

1 C. A.Paz de Araujo, J. D.Cuchlaro, L. D.Mc Millan, M. C.Scott, J. F.Scott: Nature374 (1995), p. 62710.1038/374627a0Search in Google Scholar

2 O.Aucellio, J. F. Scott; R.Ramesh: Phys. Today51 (1998), p. 2210.1063/1.882324Search in Google Scholar

3 A.Roy, A.Dhar, Bhattacharya, S. K. Ray: J. Phys. D, Appl. Phys. 41, p. 09540810.1088/0022-3727/41/9/095408Search in Google Scholar

4 H.Nyung Lee, S.Senz, A.Pignolet, D.Hesse: J. Euro. Ceram. Soc.21 (2001), p. 156510.1016/S0955-2219(01)00065-6Search in Google Scholar

5 H.Nyung Lee, N.Zakharow, S.Senz, A.Pignolet, D.Hesse: Appl. Phys. Lett.79 (2001), p. 2961.10.1063/1.1415376Search in Google Scholar

6 S.Zhang, J.Liu, C.Zhong, C.Yang, J. Crystal Growth262 (2004), p. 34810.1016/j.jcrysgro.2003.10.045Search in Google Scholar

7 C.Bedoya, Ch.Muller, F.Jacob, Y.Gagou, M. A.Fremy, E.Elkaim: J. Phys. Condens. Matter14 (2002), p. 1184910.1088/0953-8984/14/45/326Search in Google Scholar

8 S. G.Murugan, K. B. R.Varma, J. Electroceram.8 (2002), p. 3710.1023/A:1015547202006Search in Google Scholar

9 F. K.Lotgering: J. Inorg. Nucl., Chem.9 (1959), p. 123Search in Google Scholar

10 R. E.Newnham, R. W.Wolfe, J. F.Dorrian: Mater. Res. Bull.6 (1971), p. 102910.1016/0025-5408(71)90082-1Search in Google Scholar

11 H.Irie, M.Miyayama, T.Kudo, J. Appl. Phys.90 (2001), p. 408910.1063/1.1389476Search in Google Scholar

12 X.Lu, J.Zhu, X.Li, X.Zhang, D.Wu, F.Yan, Y.Ding, Y.Wang: Appl. Phys. Lett., 76 (20003), p. 103Search in Google Scholar

13 A. L.Roytburd, S. P.Alpay, V.Nagarajan, C. S.Ganpule, S.Aggarwal, E. D.Willams, R.Ramesh: Phys. Rev. Lett.85 (2000), p. 19010.1103/PhysRevLett.85.190Search in Google Scholar

14 K. H.Chow, C. L.Wang, F. G.Shin, H. L. W.Chan, D. R.Tilley: Solid State Commun.123 (2002), p. 45710.1016/S0038-1098(02)00253-3Search in Google Scholar

15 S.Hong, B.Yang, O.Sang, Y.Kang, N.Kang, C.Hwang, O.Kwon: J. Appl. Phys.89 (2001), p. 801110.1063/1.1371277Search in Google Scholar

16 M. V.Gelfuso: J. Am. Ceram. Soc.82 (1999), p. 236810.1111/j.1151-2916.1999.tb02092.xSearch in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-02-01

© 2011, Carl Hanser Verlag, München

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110198/html
Scroll to top button