Keramische Verbundwerkstoffe*
-
Robert Danzer
and Tanja Lube
Kurzfassung
In Verbundwerkstoffen werden Werkstoffe mit zum Teil stark unterschiedlichen Eigenschaften auf mikrostruktureller Größenordnung miteinander gemischt, oft um eine bestimmte Eigenschaft des Basiswerkstoffes zu verbessern. Im Fall von verstärkten Kunststoffen und Metallen lässt sich die Verbesserung oft über „Mischungsregeln“ erklären. Im Fall von Keramik-Keramik-Verbundwerkstoffen sind sich die beteiligten Komponenten in ihren Eigenschaften sehr ähnlich: Die Festigkeit, Steifigkeit, Korrosions- und Temperaturbeständigkeit und andere sind hoch, die Zähigkeit ist eher niedrig. Dennoch ist es möglich, durch geeignete Kombination und das Ausnützen von mikromechanischen Effekten die Sprödigkeit von Keramiken zu verringern. In dieser Übersicht werden einige typische Effekte anhand von wichtigen Beispielen (umwandlungsverstärkte Keramiken, keramische Langfaserverbunde und Schichtverbunde) erläutert und durch Ergebnisse eigener Forschungsarbeiten ergänzt.
Abstract
In composites, materials with strongly differing material properties are combined on a microstructural level with the goal to enhance a certain property of the base material. For polymer and metal matrix composites, the enhancement can often be explained by some kind of “rule of mixture”. In the case of ceramic matrix composites (CMCs), the involved constituents have quite similar properties: strength, modulus, corrosion and temperature resistance and others are good while the toughness is poor. Nevertheless it is possible to reduce the brittleness of ceramics by combining suitable materials and by exploiting micromechanical effects. In this review, some important mechanisms are introduced and illustrated by results from recent research at the author‧s institute: Particle toughened ceramics, continuous fiber reinforced ceramics and layered ceramic composites.
Literatur
1 R.Warren: Ceramic-Matrix Composites, Blackie and Son Ltd., Glasgow (1992)10.1016/0010-4361(87)90485-XSearch in Google Scholar
2 N.Claussen: Fracture toughness of Al2O3 with unstabilized ZrO2 dispersed phase, Journal of the American Ceramic Society59 (1976), No. 1976-1, S. 49–51Search in Google Scholar
3 A. H.Heuer, F. F.Lange, M. V.Swain, A. G.Evans: Transformation toughening – An overview, Journal of the American Ceramic Society69 (1986), No. 1986, S. I-IV10.1111/j.1151-2916.1986.tb07400.xSearch in Google Scholar
4 A. H.Heuer: Transformation toughening in ZrO2-containing ceramics, Journal of the American Ceramic Society70 (1987), No. 10, S. 689–698Search in Google Scholar
5 A. G.Evans, K. T.Faber: Crack-growth resistance of microcracking brittle materials, Journal of the American Ceramic Society67 (1984), No. 4, S. 255–26010.1111/j.1151-2916.1984.tb18842.xSearch in Google Scholar
6 K. T.Faber, A. G.Evans: Crack deflection processes – I: Theory, Acta Metallurgica31 (1983), No. 4, S. 55–5710.1016/0001-6160(83)90046-9Search in Google Scholar
7 K. T.Faber, A. G.Evans: Crack deflection processes – II: Experiments, Acta Metallurgica31 (1983), No. 4, S. 577–58410.1016/0001-6160(83)90047-0Search in Google Scholar
8 A. G.Evans, D. B.Marshall: The mechanical behavior of ceramic matrix composites, Acta Metallurgica37 (1989), No. 10, S. 2567–258310.1016/0001-6160(89)90291-5Search in Google Scholar
9 W.Krenkel: Faserverstärkte Keramiken für Bremsanwendungen, Materialwissenschaft und Werkstofftechnik31 (2000), No. 8, S. 655–660Search in Google Scholar
10 W.Krenkel: Keramische Leichtbaubremsen, W. Krenkel (Ed.): Keramische Verbundwerkstoffe, Wiley-VCH (2003), S. 242–26810.1002/3527607315.ch11Search in Google Scholar
11 R.Lakshminarayanan, D. K.Shetty, R. A.Cutler: Toughening of layered ceramic composites with residual surface compression, Journal of the American Ceramic Society79 (1996), No. 1, S. 79–8710.1111/j.1151-2916.1996.tb07883.xSearch in Google Scholar
12 W. J.Clegg, K.Kendall, N. M.Alford, T. W.Button, J. D.Birchall: A simple way to make tough ceramics, Nature347 (1990), S. 455–45710.1038/347455a0Search in Google Scholar
13 M.Rühle, N.Claussen, A. H.Heuer: Transformation and microcrack toughening as complementary Process in ZrO2-toughened Al2O3, Journal of the American Ceramic Society69 (1986), No. 3, S. 195–197Search in Google Scholar
14 L. S.Sigl: Microcrack toughening in brittle materials containing weak and strong interfaces, Acta Materialia44 (1996), No. 9, S. 3599–360910.1016/1359-6454(96)00002-XSearch in Google Scholar
15 A. R.Bunsell, M.-H.Berger: Fine diameter ceramic fibres, Journal of the European Ceramic Society20 (2000), S. 2249–226010.1016/S0955-2219(00)00090-XSearch in Google Scholar
16 A.Shindo: Polyacrylonitril (PAN)-based carbon fibers, A. Kelly, C. Zweben (Eds.): Comprehensive Composite Materials, Elsevier, Amsterdam (2000), S. 1–3510.1016/B0-08-042993-9/00040-1Search in Google Scholar
17 E. Y.Luh, A. G.Evans: High-temperature mechanical properties of a ceramic matrix composite, Journal of the American Ceramic Society70 (1987), No. 7, S. 446–46910.1111/j.1151-2916.1987.tb05677.xSearch in Google Scholar
18 A. G.Evans, F. W.Zok: The Physics and mechanics of fibre-reinforced brittle matrix composites, Journal of Materials Science29 (1994), S. 3857–389610.1007/BF00355946Search in Google Scholar
19 M. D.Thouless, A. G.Evans: Effects of pull-out on the mechanical properties of ceramic-matrix composites, Acta Metallurgica36 (1988), No. 3, S. 517–52210.1016/0001-6160(88)90083-1Search in Google Scholar
20 R. J.Kerans, R. S.Hay, T. A.Parthasarathy, M. K.Cinibulk: Interface design for oxidation-resistant ceramic composites, Journal of the American Ceramic Society85 (2002), No. 11, S. 2599–263210.1111/j.1151-2916.2002.tb00505.xSearch in Google Scholar
21 C. G.Levi, J. Y.Yang, B. J.Dalgleish, A. G.Evans: Processing and performance of an all-oxide ceramic composite, Journal of the American Ceramic Society81 (1998), No. 8, S. 2077–208610.1111/j.1151-2916.1998.tb02590.xSearch in Google Scholar
22 E. A. V.Carelli, H.Fujita, J. Y.Yang, F. W.Zok: Effects of thermal ageing on the mechanical properties of a porous-matrix ceramic composite, Journal of the American Ceramic Society85 (2002), No. 3, S. 595–60210.1111/j.1151-2916.2002.tb00138.xSearch in Google Scholar
23 R.Simon, W. D.Vogel, R.Danzer: Kolloidale Herstellung und Eigenschaften einer neuen faserverstärkten Oxidkeramik, Wien (2003), S. 299–30310.1002/9783527609017.ch47Search in Google Scholar
24 R.Simon: Progress in processing and performance of porous-matrix oxide/oxide composites, International Journal of Applied Ceramic Technology2 (2005), No. 2, S. 141–14910.1111/j.1744-7402.2005.02016.xSearch in Google Scholar
25 R. A.Simon, R.Danzer: Oxide fiber composites with promising properties for high-temperature structural applications, Advanced Engineering Materials8 (2006), No. 11, S. 1145–115010.1002/adem.200600149Search in Google Scholar
26 V. J.Laraia, A. H.Heuer: Novel composite microstructure and mechanical behavior of mollusc shell, Journal of the American Ceramic Society72 (1989), No. 11, S. 2177–217910.1111/j.1151-2916.1989.tb06053.xSearch in Google Scholar
27 H. M.Chan: Layered ceramics: Processing and mechanical behaviour, Annual Review of Materials Science27 (1997), S. 249–28210.1146/annurev.matsci.27.1.249Search in Google Scholar
28 R.Bermejo, J.Pascual Herrero, T.Lube, R.Danzer: Optimal strength and toughness of Al2O3-ZrO2-laminates designed with external or internal compressive layers, Journal of the European Ceramic Society28 (2008), No. 8, S. 1575–1583Search in Google Scholar
29 G.Blugan, R.Dobedoe, M.Lugovy, S.Koebel, J.Kuebler: Si3N4-TiN based micro-laminates with rising R-curve behaviour, Composites Part B37 (2006), No. 6, S. 459–46510.1016/j.compositesb.2006.02.013Search in Google Scholar
30 W. J.Clegg: The fabrication and failure of laminar ceramic composites, Acta Metallurgica et Materialia40 (1992), No. 11, S. 3085–309310.1016/0956-7151(92)90471-PSearch in Google Scholar
31 W. J.Clegg: Design of ceramic laminates for structural applications, Materials Science and Technology14 (1998), No. 6, S. 486–49510.1179/026708398790290208Search in Google Scholar
32 K. S.Blanks, A.Kristoffersson, E.Carlström, W. J.Clegg: Crack deflection in ceramic laminates using porous interlayers, Journal of the European Ceramic Society18 (1998), S. 1945–195110.1016/S0955-2219(98)00134-4Search in Google Scholar
33 J.Ma, H.Wang, L.Weng, G. E. B.Tan: Effect of porous interlayers on crack deflection in ceramic laminates, Journal of the European Ceramic Society24 (2004), No. 5, S. 825–83110.1016/S0955-2219(03)00338-8Search in Google Scholar
34 A. J.Phillipps, W. J.Clegg, T. W.Clyne: Fracture behaviour of ceramic laminates in bending – I: Modelling of crack propagation, Acta Metallurgica et Materialia41 (1993), No. 3, S. 805–81710.1016/0956-7151(93)90014-JSearch in Google Scholar
35 A. J.Phillipps, W. J.Clegg, T. W.Clyne: Fracture behaviour of ceramic laminates in bending – II: Comparison of model prediction with experimental data, Acta Metallurgica et Materialia41 (1993), No. 3, S. 818–82710.1016/0956-7151(93)90015-KSearch in Google Scholar
36 H. J.Oel, V. D.Frechette: Stress distribution in multiphase systems – I: Composites with planar interfaces, Journal of the American Ceramic Society50 (1967), S. 542–54910.1111/j.1151-2916.1967.tb14992.xSearch in Google Scholar
37 C. R.Chen, J.Pascual, F. D.Fischer, O.Kolednik, R.Danzer: Prediction of fracture toughness of a ceramic multilayer composite – Modelling and experiments, Acta Materialia55 (2007), No. 2, S. 409–42110.1016/j.actamat.2006.07.046Search in Google Scholar
38 A. V.Virkar, J. L.Huang, R. A.Cutler: Strengthening of oxide ceramics by transformation-induced stresses, Journal of the American Ceramic Society70 (1987), No. 3, S. 164–17010.1111/j.1151-2916.1987.tb04952.xSearch in Google Scholar
39 V. M.Sglavo, M.Paternoster, M.Bertoldi: Tailored residual stresses in high reliability Alumina-Mullite ceramic laminates, Journal of the American Ceramic Society88 (2005), No. 10, S. 2826–283210.1111/j.1551-2916.2005.00479.xSearch in Google Scholar
40 T.Lube, J.Pascual Herrero, F.Chalvet, G.de Portu: Effective fracture toughness in Al2O3 − Al2O3/ZrO2 laminates, Journal of the European Ceramic Society27 (2007), No. 2007-2, S. 1449–1453Search in Google Scholar
41 J.Pascual, T.Lube, R.Danzer: Fracture statistics of ceramic laminates strengthened by compressive residual stresses, Journal of the European Ceramic Society28 (2008), No. 8, S. 1551–155610.1016/j.jeurceramsoc.2007.10.005Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Vorwort/Editorial
- 9. Tagung „Gefüge und Bruch“
- Fachbeiträge/Technical Contributions
- Degradation of Material Properties Significant for Lifetime Extension of Nuclear Power Plants
- Keramische Verbundwerkstoffe*
- Charakterisierung der Schädigungsentwicklung in ultrafeinkörnigem IF Stahl mittels digitaler Bildkorrelation*
- Entwicklung eines nichtlokalen Schädigungsmodells*
- Spannungs- und Schwingungsrisskorrosion
- Spannungsrisskorrosion hochfester Stähle*
- Kurzzeitverfahren zur Berechnung von Wöhlerkurven metallischer Werkstoffe auf der Basis physikalisch basierter Messgrößen*
- Vibrations- und Stoßbelastungen an IBCs und Tankfahrzeugen
- Erweiterung der visuellen Röntgenprüfung durch effizientere digitale Technologien
- Charpy V-Notch Impact Behaviour of Structural Steels Subjected to Specific Manufacturing Conditions
- Untersuchung keramischer Werkstoffe für Walzen und andere Komponenten der Walztechnik
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Vorwort/Editorial
- 9. Tagung „Gefüge und Bruch“
- Fachbeiträge/Technical Contributions
- Degradation of Material Properties Significant for Lifetime Extension of Nuclear Power Plants
- Keramische Verbundwerkstoffe*
- Charakterisierung der Schädigungsentwicklung in ultrafeinkörnigem IF Stahl mittels digitaler Bildkorrelation*
- Entwicklung eines nichtlokalen Schädigungsmodells*
- Spannungs- und Schwingungsrisskorrosion
- Spannungsrisskorrosion hochfester Stähle*
- Kurzzeitverfahren zur Berechnung von Wöhlerkurven metallischer Werkstoffe auf der Basis physikalisch basierter Messgrößen*
- Vibrations- und Stoßbelastungen an IBCs und Tankfahrzeugen
- Erweiterung der visuellen Röntgenprüfung durch effizientere digitale Technologien
- Charpy V-Notch Impact Behaviour of Structural Steels Subjected to Specific Manufacturing Conditions
- Untersuchung keramischer Werkstoffe für Walzen und andere Komponenten der Walztechnik
- Vorschau/Preview
- Vorschau