Startseite Naturwissenschaften Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media

  • Sangita Mandal , Satyajit Biswas , Monohar Hossain Mondal und Bidyut Saha
Veröffentlicht/Copyright: 9. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Modern science and technology promote synthesis routes which are eco-friendly, chemicals which are promoted as “green” and solvents which are less toxic. A convenient method for the synthesis of ether by the reaction of 4-hydroxy benzoic acid and benzyl chloride using a surfactant as catalyst has been developed. The targeted ether is completely immiscible in water but in association with the interface active surfactants, the production of such a hydrophobic organic compound in water has been made possible. Micelles produce a pseudo-cellular organic environment to isolate species from the bulk solvent and favour the compartmentalization of reagents as well. Thus, the enhancement of the local concentration takes place and consequently the reactivity increases. The interaction of such unique chemo-, regio- and stereo-selectivity of surfactants made this reaction feasible. Organic species added to a micellar media are distributed between bulk water and micelles depending on their polarity, charge and dimension. This novel chemistry describes a set of green methods for carrying out this new generation Williamson reaction which can also be used for selective O-alkylation.

Kurzfassung

Moderne Wissenschaft und Technologie fördern umweltfreundliche Synthesewege, umweltfreundliche Chemikalien und gering toxische Lösungsmittel. Es wurde ein geeignetes Verfahren zur Synthese von Ether durch Umsetzung von 4-Hydroxybenzoesäure und Benzylchlorid unter Verwendung von Tensid als Katalysator entwickelt. Das Zielprodukt Ether ist in Wasser nicht vollständig mischbar, doch in Verbindung mit den grenzflächenaktiven Tensiden konnte eine solche hydrophobe organische Verbindung in Wasser hergestellt werden. Mizellen produzieren eine pseudozelluläre organische Umgebung, um Spezies aus dem Bulklösungsmittel zu isolieren und die Kompartimentierung von Reagenzien zu begünstigen. Dadurch wird die lokale Konzentration erhöht und die Reaktivität nimmt folglich zu. Diese Reaktion wird durch das einzigartige Zusammenspiel der Chemo-, Regio- und Stereoselektivität von Tensiden ermöglicht. Organische Spezies, die mizellaren Medien zugesetzt werden, verteilen sich je nach Polarität, Ladung und Dimension zwischen dem Bulkwasser und den Mizellen. Diese neue Chemie beschreibt eine Reihe umweltfreundlicher (grüner) Methoden zur Durchführung der Williamson-Reaktion der neuen Generation, die auch für die selektive O-Alkylierung verwendet werden kann.


Correspondence address, Prof. Dr. Bidyut Saha, Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Burdwan 713104, WB, India, Mobile: +919476341691, Tel.: +91-342-2533913 (O), Fax: +91-342-2530452 (O), E-Mail:

Sangita Mandal was born in Khatra, Bankura in 1991. She passed her M.Sc degree from The University of Burdwan in 2013 and got UGC-RGNF fellowship on the year 2015. She also clears the NET exam in Chemical Sciences in 2012. She is working in lab in “Homogeneous Catalysis” division.

Satyajit Biswas was born in Hooghly in 1980. He passed his M.Sc degree from The University of Burdwan in 2003. He is working in Department of Chemistry, Hooghly Women's College, and Hooghly as a Professor and also working as a part-time fellow in lab in “Homogeneous Catalysis” division.

Monohar Hossain Mondal was born in kalna, Burdwan in 1991. He has completed his M.Sc. degree from The University of Burdwan in 2013 and received UGC-NET JRF in the same year. After completing one year as JRF at the Bioremediation Laboratory (The University of Burdwan), he has been appointed as WBES Officer by the Government of West Bengal and presently working as Assistant Professor in Chem- istry at Govt. General Degree College at Singur, Hooghly, WB, India.

Bidyut Saha was born in Birbhum, WB, India in 1975. He obtained his Ph.D degree from Visva Bharati University, India in 2007. He was a visiting scientist for the year 2009–2010 in the Department of Chemistry, UBC, Vancouver, Canada. Dr. Saha is presently working as Professor in the Department of Chemistry, The University of Burdwan, India. His area of interests is bioremediation of toxic metal, micellar catalysis and chemical kinetics. He has already published more than 110 papers in international journals.


References

1. Mondal, M. H., Malik, S., De, S., Bhattacharyya, S. S. and Saha, B.: Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP; Res. Chem. Intermed.43(3) 16511670. 10.1007/s11164-016-2721-6Suche in Google Scholar

2. Malik, S., Mondal, M. H., Ghosh, A., De, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Combination of Sodium Dodecylsulfate and 2,2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium (VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach; J. Solut. Chem.45 (7), 10431060. 10.1007/s10953-016-0494-6Suche in Google Scholar

3. Mondal, M. H., Malik, S. and Saha, B.: Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl; Tenside Surf. Det.54 (5), 378384. 10.3139/113.110519Suche in Google Scholar

4. Mandal S. , Mandal, S., Ghosh, S. K., Sar, P., Ghosh, A., Saha, R. and Saha, B.: A review on the advancement of ether synthesis from organic solvent to water; RSC Advances;6 (2016) 6960569614. 10.1039/c6ra12914eSuche in Google Scholar

5. Enthaler, S. and Company, A.: Palladium-catalysed hydroxylation and alkoxylation; Chem. Soc. Rev, 40 (2011) 49124924. PMid:21643619; 10.1039/C1CS15085ESuche in Google Scholar PubMed

6. Ma, D. and Cai, Q.: N,N-Dimethyl Glycine-Promoted Ullmann Coupling Reaction of Phenols and Aryl Halides; Org. Lett., 5(21) (2003) 37993802. PMid:14535713; 10.1021/ol0350947Suche in Google Scholar PubMed

7. Agan, J.P., Hauptman, E. and Shapiro Casalnuovo, R. A.: Using Intelligent/Random Library Screening To Design Focused Libraries for the Optimization of Homogeneous Catalysts: Ullmann Ether Formation; J. Am. Chem. Soc.122 (2000) 50435051. 10.1021/ja000094cSuche in Google Scholar

8. Zhu, J., Price, A.B., Zhao, X.S. and Skonezny, M. P.: Copper(I)-catalyzed intramolecular cyclization reaction of 2-(2′-chlorophenyl)ethanol to give 2,3-dihydrobenzofuran; Tetrahedron Lett.41 (2000) 4011401410.1016/S0040-4039(00)00548-7Suche in Google Scholar

9. Shen, B., Liu, W. and Nonaka, K.: Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents; Curr. Med. Chem, 10 (2003) 23172325. PMid:14529344; 10.2174/0929867033456701Suche in Google Scholar PubMed

10. Nicolaou, C.K. and Smith, L.A.: Molecular design, chemical synthesis, and biological action of enediynes1992, 25, 11, 497503. 10.1021/ar00023a003Suche in Google Scholar

11. Suzuki, I., Shigenaga, A., Nemoto, H. and Shibuya, M.: Synthesis and DNA damaging ability of enediyne–polyamine conjugates; Tetrahedron. Lett.45 (2004) 19551959. 10.1016/j.tetlet.2003.12.139Suche in Google Scholar

12. Dai, W. M.: Natural Product Inspired Design of Enediyne Prodrugs via Rearrangement of an Allylic Double Bond; Curr. Med. Chem.10 (2003) 22652283. PMid:14529342; 10.2174/0929867033456756Suche in Google Scholar PubMed

13. Wang, Z., He, Q., LiangY., Wang, D., Yi, Y. and Li, D.: Histone Acetyltransferase 1 Promotes Homologous Recombination in DNA Repair by Facilitating Histone Turnover; Biochem. Pharm.65 (2003) 1827118282. PMid:23653357; 10.1074/jbc.M113.473199Suche in Google Scholar PubMed PubMed Central

14. Lin, F. C., Lo, H. Y., Hsieh, C. M., Chen, H. Y., Wanga, J. J. and Wua, J. M.: Cytotoxicities, cell cycle and caspase evaluations of 1,6-diaryl-3(Z)-hexen-1,5-diynes, 2-(6-aryl-3(Z)-hexen-1,5-diynyl)anilines and their derivatives; Bioorg. Med. Chem., 13 (2005) 35653575. PMid:15848769; 10.1016/j.bmc.2005.02.062Suche in Google Scholar PubMed

15. Fouad, Farid S., Wright, Justin M., PlourdeII, Gary, Purohit, Ajay D., Wyatt, Justin K., El-Shafey, Ahmed, Hynd, George, Crasto, Curtis F., Lin, Yiqing and Jones, Graham B.: Synthesis and Protein Degradation Capacity of Photoactivated Enediynes; J. Org. Chem.70 (2005) 97899797. PMid:16292807; 10.1021/jo051403qSuche in Google Scholar PubMed

16. Kinetic studies of glutamic acid oxidation by hexavalent chromium in presence of surfactants. A.Basu, S. K.Ghosh, R.Saha, A.Ghosh, T.Ghosh, K.Mukherjee, S. S.Bhattacharyya and B.Saha. Tenside Surf. Det.49 (2012) 481. 10.3139/113.110220Suche in Google Scholar

17. Nicolaou, C. K. and Dia, M. W.: Chemistry and Biology of the Enediyne Anticancer Antibiotics;Angew. Chem. Int. Ed, 30 (1991) 13871416. 10.1002/anie.199113873Suche in Google Scholar

18. Solhy, A., Elmakssoudi, A., Tahir, R., Karkouri, M., Larzek, M., Bousmina, M. and Zahouily, M.: Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7; Green Chem, 12 (2010) 22612267. 10.1039/C0GC00387ESuche in Google Scholar

19. Mondal, M. H., Sarkar, A., Maiti, T. K. and Saha, B.: Microbial assisted (pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies, J. Mol. Liq.242 (2017) 87378. 10.1016/j.molliq.2017.07.089Suche in Google Scholar

20. Preetam, A. and Nath, M.: Ambient temperature synthesis of spiro[indoline-3,2′-thiazolidinones] by a DBSA-catalyzed sequential reaction in water; Tetrahedron Lett.57 (2016) 15021506. 10.1016/j.tetlet.2016.02.079Suche in Google Scholar

21. Kumar, D., Seth, K., Kommi, D. N., Bhagat, S. and Chakraborti, A. K.: Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis; RSC Adv.3 (2013) 1515715168. 10.1039/C3RA41038BSuche in Google Scholar

22. Ghosh, A., Saha, R. and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous mediaJ. Ind. Eng. Chem.20 (2014) 345355. 10.1016/j.jiec.2013.03.028Suche in Google Scholar

23. Das, A. K., Roy, A and Saha, B.: Kinetics and mechanism of the picolinic acid catalysed chromium (VI) oxidation of ethane-1,2-diol in the presence and absence of surfactants Transition Met. Chem.26 (2001) 630637. 10.1515/irm-1999-0210Suche in Google Scholar

24. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S., Laskar, S. and Saha, B.: Selection of Suitable Combination of Nonfunctional Micellar Catalyst and Heteroaromatic Nitrogen Base as Promoter for Chromic Acid Oxidation of Ethanol to Acetaldehyde in Aqueous Medium at Room Temperature Int. J. Chem. Kinet.45 (2013) 175186. 10.1002/kin.20754Suche in Google Scholar

25. Ghosh, S. K., Basu, A., Saha, R., Ghosh, Mukherjee, A. K. and Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol; J. Coord. Chem.65 (2012) 11581177. 10.1080/00958972.2012.669035Suche in Google Scholar

26. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K. and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperature, J. Mol. Liq.225 (2017) 207216. 10.1016/j.molliq.2016.11.033Suche in Google Scholar

27. Ghosh, A., Sar, P., Malik, S. and Saha: Role of surfactants on metal mediated cerium(IV) oxidation of valeraldehyde at room temperature and pressure; B. J. Mol. Liq.211 (2015) 4862. 10.1016/j.molliq.2015.06.056Suche in Google Scholar

28. Jain R. , SharmaK. and KumarD.: Ionic liquid mediated synthesis, reactions, and insecticidal activity of 1-[(1H-benzoimidazol-2-yl)amino]spiro[azetidine-4,4-[4 H]chroman]-2-ones;Tetrahedron Lett.53 (2012) 239251. 10.3906/kim-1206-47Suche in Google Scholar

29. Mandal, S., Mandal, S., Biswas, S., Banerjee, S. and Saha, B.: Synthesis of 2-(ethynyloxy)naphthaene-1-carbaldehyde using 2-hydroxy benzyl alcohol and propargyl bromide in aqueous micellar media Res. Chem. Intermed.44 (2018) 21692177. 10.1007/s11164-017-3221-zSuche in Google Scholar

30. Naskar, S., Roy, S. and Sarkar, S.: Novel Route for the Synthesis of 3-(Pyrrol-1-yl)-indolin-2-ones in Aqueous Micellar Medium;Synth. Commun;4416291634 (2014). 10.1080/00397911.2013.867506Suche in Google Scholar

31. Mandal, S., Mandal, S., Biswas, S. and Saha, B.: Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p- nitro Benzaldehyde and Acetone in Aqueous Micellar media using L-proline; Tenside Surf. Det.55 (2018) 4325330. 10.3139/113.110566Suche in Google Scholar

32. Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water, Tenside. Sufr. Det.54 (2017) 51929. 10.3139/113.110523Suche in Google Scholar

33. Mondal, M. H., Roy, A., Malik, S., Ghosh, A. and Saha, B.: Review on chemically bonded geminis with cationic heads: second-generation interfactants, Res. Chem. Intermed.42 (2015) 191328. 10.1007/s11164-015-2125-zSuche in Google Scholar

34. Mandal, S., Mandal, S., Biswas, S., Mondal, M. H. and Saha, B.: Synthesis of 2-(prop-2-ynyloxy) benzaldehyde using Salicylaldehyde and Propargyl bromide in aqueous micellar media Tenside Surf. Det.56 (2019) 337342. 10.3139/113.110629Suche in Google Scholar

Received: 2019-05-30
Accepted: 2019-10-28
Published Online: 2020-03-09
Published in Print: 2020-03-16

© 2020, Carl Hanser Publisher, Munich

Heruntergeladen am 20.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/113.110676/html?lang=de
Button zum nach oben scrollen