Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media
-
Sangita Mandal
, Satyajit Biswas , Monohar Hossain Mondal und Bidyut Saha
Abstract
Modern science and technology promote synthesis routes which are eco-friendly, chemicals which are promoted as “green” and solvents which are less toxic. A convenient method for the synthesis of ether by the reaction of 4-hydroxy benzoic acid and benzyl chloride using a surfactant as catalyst has been developed. The targeted ether is completely immiscible in water but in association with the interface active surfactants, the production of such a hydrophobic organic compound in water has been made possible. Micelles produce a pseudo-cellular organic environment to isolate species from the bulk solvent and favour the compartmentalization of reagents as well. Thus, the enhancement of the local concentration takes place and consequently the reactivity increases. The interaction of such unique chemo-, regio- and stereo-selectivity of surfactants made this reaction feasible. Organic species added to a micellar media are distributed between bulk water and micelles depending on their polarity, charge and dimension. This novel chemistry describes a set of green methods for carrying out this new generation Williamson reaction which can also be used for selective O-alkylation.
Kurzfassung
Moderne Wissenschaft und Technologie fördern umweltfreundliche Synthesewege, umweltfreundliche Chemikalien und gering toxische Lösungsmittel. Es wurde ein geeignetes Verfahren zur Synthese von Ether durch Umsetzung von 4-Hydroxybenzoesäure und Benzylchlorid unter Verwendung von Tensid als Katalysator entwickelt. Das Zielprodukt Ether ist in Wasser nicht vollständig mischbar, doch in Verbindung mit den grenzflächenaktiven Tensiden konnte eine solche hydrophobe organische Verbindung in Wasser hergestellt werden. Mizellen produzieren eine pseudozelluläre organische Umgebung, um Spezies aus dem Bulklösungsmittel zu isolieren und die Kompartimentierung von Reagenzien zu begünstigen. Dadurch wird die lokale Konzentration erhöht und die Reaktivität nimmt folglich zu. Diese Reaktion wird durch das einzigartige Zusammenspiel der Chemo-, Regio- und Stereoselektivität von Tensiden ermöglicht. Organische Spezies, die mizellaren Medien zugesetzt werden, verteilen sich je nach Polarität, Ladung und Dimension zwischen dem Bulkwasser und den Mizellen. Diese neue Chemie beschreibt eine Reihe umweltfreundlicher (grüner) Methoden zur Durchführung der Williamson-Reaktion der neuen Generation, die auch für die selektive O-Alkylierung verwendet werden kann.
References
1. Mondal, M. H., Malik, S., De, S., Bhattacharyya, S. S. and Saha, B.: Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP; Res. Chem. Intermed.43(3) 1651–1670. 10.1007/s11164-016-2721-6Suche in Google Scholar
2. Malik, S., Mondal, M. H., Ghosh, A., De, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Combination of Sodium Dodecylsulfate and 2,2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium (VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach; J. Solut. Chem.45 (7), 1043–1060. 10.1007/s10953-016-0494-6Suche in Google Scholar
3. Mondal, M. H., Malik, S. and Saha, B.: Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl; Tenside Surf. Det.54 (5), 378–384. 10.3139/113.110519Suche in Google Scholar
4. Mandal S. , Mandal, S., Ghosh, S. K., Sar, P., Ghosh, A., Saha, R. and Saha, B.: A review on the advancement of ether synthesis from organic solvent to water; RSC Advances;6 (2016) 69605–69614. 10.1039/c6ra12914eSuche in Google Scholar
5. Enthaler, S. and Company, A.: Palladium-catalysed hydroxylation and alkoxylation; Chem. Soc. Rev, 40 (2011) 4912–4924. PMid:21643619; 10.1039/C1CS15085ESuche in Google Scholar PubMed
6. Ma, D. and Cai, Q.: N,N-Dimethyl Glycine-Promoted Ullmann Coupling Reaction of Phenols and Aryl Halides; Org. Lett., 5(21) (2003) 3799–3802. PMid:14535713; 10.1021/ol0350947Suche in Google Scholar PubMed
7. Agan, J.P., Hauptman, E. and Shapiro Casalnuovo, R. A.: Using Intelligent/Random Library Screening To Design Focused Libraries for the Optimization of Homogeneous Catalysts: Ullmann Ether Formation; J. Am. Chem. Soc.122 (2000) 5043–5051. 10.1021/ja000094cSuche in Google Scholar
8. Zhu, J., Price, A.B., Zhao, X.S. and Skonezny, M. P.: Copper(I)-catalyzed intramolecular cyclization reaction of 2-(2′-chlorophenyl)ethanol to give 2,3-dihydrobenzofuran; Tetrahedron Lett.41 (2000) 4011–401410.1016/S0040-4039(00)00548-7Suche in Google Scholar
9. Shen, B., Liu, W. and Nonaka, K.: Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents; Curr. Med. Chem, 10 (2003) 2317–2325. PMid:14529344; 10.2174/0929867033456701Suche in Google Scholar PubMed
10. Nicolaou, C.K. and Smith, L.A.: Molecular design, chemical synthesis, and biological action of enediynes1992, 25, 11, 497–503. 10.1021/ar00023a003Suche in Google Scholar
11. Suzuki, I., Shigenaga, A., Nemoto, H. and Shibuya, M.: Synthesis and DNA damaging ability of enediyne–polyamine conjugates; Tetrahedron. Lett.45 (2004) 1955–1959. 10.1016/j.tetlet.2003.12.139Suche in Google Scholar
12. Dai, W. M.: Natural Product Inspired Design of Enediyne Prodrugs via Rearrangement of an Allylic Double Bond; Curr. Med. Chem.10 (2003) 2265–2283. PMid:14529342; 10.2174/0929867033456756Suche in Google Scholar PubMed
13. Wang, Z., He, Q., LiangY., Wang, D., Yi, Y. and Li, D.: Histone Acetyltransferase 1 Promotes Homologous Recombination in DNA Repair by Facilitating Histone Turnover; Biochem. Pharm.65 (2003) 18271–18282. PMid:23653357; 10.1074/jbc.M113.473199Suche in Google Scholar PubMed PubMed Central
14. Lin, F. C., Lo, H. Y., Hsieh, C. M., Chen, H. Y., Wanga, J. J. and Wua, J. M.: Cytotoxicities, cell cycle and caspase evaluations of 1,6-diaryl-3(Z)-hexen-1,5-diynes, 2-(6-aryl-3(Z)-hexen-1,5-diynyl)anilines and their derivatives; Bioorg. Med. Chem., 13 (2005) 3565–3575. PMid:15848769; 10.1016/j.bmc.2005.02.062Suche in Google Scholar PubMed
15. Fouad, Farid S., Wright, Justin M., PlourdeII, Gary, Purohit, Ajay D., Wyatt, Justin K., El-Shafey, Ahmed, Hynd, George, Crasto, Curtis F., Lin, Yiqing and Jones, Graham B.: Synthesis and Protein Degradation Capacity of Photoactivated Enediynes; J. Org. Chem.70 (2005) 9789–9797. PMid:16292807; 10.1021/jo051403qSuche in Google Scholar PubMed
16. Kinetic studies of glutamic acid oxidation by hexavalent chromium in presence of surfactants. A.Basu, S. K.Ghosh, R.Saha, A.Ghosh, T.Ghosh, K.Mukherjee, S. S.Bhattacharyya and B.Saha. Tenside Surf. Det.49 (2012) 481. 10.3139/113.110220Suche in Google Scholar
17. Nicolaou, C. K. and Dia, M. W.: Chemistry and Biology of the Enediyne Anticancer Antibiotics;Angew. Chem. Int. Ed, 30 (1991) 1387–1416. 10.1002/anie.199113873Suche in Google Scholar
18. Solhy, A., Elmakssoudi, A., Tahir, R., Karkouri, M., Larzek, M., Bousmina, M. and Zahouily, M.: Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7; Green Chem, 12 (2010) 2261–2267. 10.1039/C0GC00387ESuche in Google Scholar
19. Mondal, M. H., Sarkar, A., Maiti, T. K. and Saha, B.: Microbial assisted (pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies, J. Mol. Liq.242 (2017) 873–78. 10.1016/j.molliq.2017.07.089Suche in Google Scholar
20. Preetam, A. and Nath, M.: Ambient temperature synthesis of spiro[indoline-3,2′-thiazolidinones] by a DBSA-catalyzed sequential reaction in water; Tetrahedron Lett.57 (2016) 1502–1506. 10.1016/j.tetlet.2016.02.079Suche in Google Scholar
21. Kumar, D., Seth, K., Kommi, D. N., Bhagat, S. and Chakraborti, A. K.: Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis; RSC Adv.3 (2013) 15157–15168. 10.1039/C3RA41038BSuche in Google Scholar
22. Ghosh, A., Saha, R. and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous mediaJ. Ind. Eng. Chem.20 (2014) 345–355. 10.1016/j.jiec.2013.03.028Suche in Google Scholar
23. Das, A. K., Roy, A and Saha, B.: Kinetics and mechanism of the picolinic acid catalysed chromium (VI) oxidation of ethane-1,2-diol in the presence and absence of surfactants Transition Met. Chem.26 (2001) 630–637. 10.1515/irm-1999-0210Suche in Google Scholar
24. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S., Laskar, S. and Saha, B.: Selection of Suitable Combination of Nonfunctional Micellar Catalyst and Heteroaromatic Nitrogen Base as Promoter for Chromic Acid Oxidation of Ethanol to Acetaldehyde in Aqueous Medium at Room Temperature Int. J. Chem. Kinet.45 (2013) 175–186. 10.1002/kin.20754Suche in Google Scholar
25. Ghosh, S. K., Basu, A., Saha, R., Ghosh, Mukherjee, A. K. and Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol; J. Coord. Chem.65 (2012) 1158–1177. 10.1080/00958972.2012.669035Suche in Google Scholar
26. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K. and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperature, J. Mol. Liq.225 (2017) 207–216. 10.1016/j.molliq.2016.11.033Suche in Google Scholar
27. Ghosh, A., Sar, P., Malik, S. and Saha: Role of surfactants on metal mediated cerium(IV) oxidation of valeraldehyde at room temperature and pressure; B. J. Mol. Liq.211 (2015) 48–62. 10.1016/j.molliq.2015.06.056Suche in Google Scholar
28. Jain R. , SharmaK. and KumarD.: Ionic liquid mediated synthesis, reactions, and insecticidal activity of 1-[(1H-benzoimidazol-2-yl)amino]spiro[azetidine-4,4-[4 H]chroman]-2-ones;Tetrahedron Lett.53 (2012) 239–251. 10.3906/kim-1206-47Suche in Google Scholar
29. Mandal, S., Mandal, S., Biswas, S., Banerjee, S. and Saha, B.: Synthesis of 2-(ethynyloxy)naphthaene-1-carbaldehyde using 2-hydroxy benzyl alcohol and propargyl bromide in aqueous micellar media Res. Chem. Intermed.44 (2018) 2169–2177. 10.1007/s11164-017-3221-zSuche in Google Scholar
30. Naskar, S., Roy, S. and Sarkar, S.: Novel Route for the Synthesis of 3-(Pyrrol-1-yl)-indolin-2-ones in Aqueous Micellar Medium;Synth. Commun;441629–1634 (2014). 10.1080/00397911.2013.867506Suche in Google Scholar
31. Mandal, S., Mandal, S., Biswas, S. and Saha, B.: Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p- nitro Benzaldehyde and Acetone in Aqueous Micellar media using L-proline; Tenside Surf. Det.55 (2018) 4325–330. 10.3139/113.110566Suche in Google Scholar
32. Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water, Tenside. Sufr. Det.54 (2017) 519–29. 10.3139/113.110523Suche in Google Scholar
33. Mondal, M. H., Roy, A., Malik, S., Ghosh, A. and Saha, B.: Review on chemically bonded geminis with cationic heads: second-generation interfactants, Res. Chem. Intermed.42 (2015) 1913–28. 10.1007/s11164-015-2125-zSuche in Google Scholar
34. Mandal, S., Mandal, S., Biswas, S., Mondal, M. H. and Saha, B.: Synthesis of 2-(prop-2-ynyloxy) benzaldehyde using Salicylaldehyde and Propargyl bromide in aqueous micellar media Tenside Surf. Det.56 (2019) 337–342. 10.3139/113.110629Suche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants/Biosurfactants
- Antifungal Activity of Morpholine and Piperidine Based Surfactants
- Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils
- Environmental Chemistry
- Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media
- Synthesis
- Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants
- Synthesis of Alkylbenzene from Medium-Chain Olefins Catalyzed by an Acidic Ionic Liquid and the Surface Properties of Their Sulfonate
- Physical Chemistry
- Composition and Solubilization of the Microemulsion Systems Containing Triton X-100: Effects of Aqueous Composition and Oil-Water-Ratios
- Study of Structure of Water Droplets of Nonionic Polyoxyethylene (4) Lauryl Ether Reverse Micelles in the Presence of Sodium Cholate
- Binary Cationic Dyes-Counter Ion Extraction by Reverse Micelles
- Investigation of the Physiochemical Properties of Beauty Soaps Available in Pakistan
- Application
- Fabrication and Application of Cationic Polyacrylamide
- Study of Tribological Synergistic Effect of N-Containing Heterocyclic Borate Ester with Tricresyl Phosphate as Rapeseed Oil Additive
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants/Biosurfactants
- Antifungal Activity of Morpholine and Piperidine Based Surfactants
- Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils
- Environmental Chemistry
- Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media
- Synthesis
- Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants
- Synthesis of Alkylbenzene from Medium-Chain Olefins Catalyzed by an Acidic Ionic Liquid and the Surface Properties of Their Sulfonate
- Physical Chemistry
- Composition and Solubilization of the Microemulsion Systems Containing Triton X-100: Effects of Aqueous Composition and Oil-Water-Ratios
- Study of Structure of Water Droplets of Nonionic Polyoxyethylene (4) Lauryl Ether Reverse Micelles in the Presence of Sodium Cholate
- Binary Cationic Dyes-Counter Ion Extraction by Reverse Micelles
- Investigation of the Physiochemical Properties of Beauty Soaps Available in Pakistan
- Application
- Fabrication and Application of Cationic Polyacrylamide
- Study of Tribological Synergistic Effect of N-Containing Heterocyclic Borate Ester with Tricresyl Phosphate as Rapeseed Oil Additive