Synthesis of Alkylbenzene from Medium-Chain Olefins Catalyzed by an Acidic Ionic Liquid and the Surface Properties of Their Sulfonate
-
Shanshan Kong
Abstract
The Fischer-Tropsch synthesis can be used to achieve a high content of α-olefin (C5–C11) products using Fe-based catalysts. Herein, C6 and C8 α-olefins have been selected as examples for the alkylation of benzene catalyzed by using an acidic ionic liquid (Et3NHCl-AlCl3) to obtain a variety of intermediates used to prepare surfactants. A series of alkylbenzenes were synthesized by controlling the reaction conditions and their corresponding alkylbenzene sulfonates were successfully obtained by sulfonation and neutralization. It was found that the single chain alkylbenzene sulfonate derivatives did not display typical surfactant properties due to their short hydrophobic chain length. However, double chain alkylbenzene sulfonates exhibit excellent surfactant properties, and decrease the water surface tension compared to commercially available sodium dodecylbenzene sulfonates. A γcmc (mN m−1) value of 32.70 was observed for sodium di-hexylbenzene sulfonates, 29.98 for sodium di-octylbenzene sulfonates, and 36.0 for sodium dodecylbenzene sulfonates. In addition, double chain alkylbenzene sulfonates show an improved emulsifying and wettability performance compared to sodium dodecylbenzene sulfonate. This demonstrates that the capability of alkylbenzene sulfonate to decrease the surface tension are closely related to the total carbon number of side chain-alkyl groups connected to the benzene ring.
Kurzfassung
Die Fischer-Tropsch-Synthese lässt sich einsetzen, um unter Verwendung von Katalysatoren auf Fe-Basis einen hohen Gehalt an α-Olefin (C5–C11)-Produkten zu erzielen. Für diese Untersuchung wurden C6- und C8-α-Olefine als Beispiele für die Alkylierung von Benzen ausgewählt, die durch die Verwendung einer sauren ionischen Flüssigkeit (Et3NHCl-AlCl3) katalysiert wurde, wobei eine Vielzahl von Zwischenprodukten erhalten wird, die für die Herstellung von Tensiden verwendet werden. Eine Reihe von Alkylbenzenen wurde durch Kontrolle der Reaktionsbedingungen synthetisiert; ihre entsprechenden Alkylbenzensulfonate wurden erfolgreich durch Sulfonierung und Neutralisation erhalten. Es wurde gefunden, dass die einkettigen Alkylbenzensulfonat-Derivate aufgrund ihrer kurzen hydrophoben Kettenlänge keine typischen Tensideigenschaften zeigten. Die doppelkettigen Alkylbenzensulfonate zeigen jedoch ausgezeichnete Tensideigenschaften, wodurch die Wasseroberflächenspannung im Vergleich zu den im Handel erhältlichen Natriumdodecylbenzensulfonaten verringert wird. Für Natriumdihexylbenzensulfonat wurde ein γCMC-Wert von 32,70 mN m−1 beobachtet, für Natriumdioctylbenzensulfonat 29,98 mN m–1 und für Natriumdodecylbenzensulfonat 36,0 mN m–1. Darüber hinaus zeigen die doppelkettigen Alkylbenzensulfonate im Vergleich zu Natriumdodecylbenzensulfonat ein verbessertes Emulgier- und Benetzbarkeitsverhalten. Dies zeigt, dass die Fähigkeit von Alkylbenzensulfonaten, die Oberflächenspannung zu verringern, eng mit der Gesamtkohlenstoffzahl der an den Benzenring gebundenen Alkylgruppen-Seitenketten zusammenhängt.
References
1. Xu, J., Yang, Y. and Li, Y. W.: Fischer-Tropsch synthesis process development: steps From fundamentals to industrial practices. Current Opinion in Chemical Engineering.2 (2013) 354–362. 10.1016/j.coche.2013.05.002Suche in Google Scholar
2. Dry, M. E.: Present and future applications of the Fischer-Tropsch process. Applied Catalysis A. General.1 (2004) 1–3. 10.1016/j.apcata.2004.08.014Suche in Google Scholar
3. Özkara-Aydınoğlu, Ş., Ataç, Ö., Gül, Ö. F., Kınayyiğit, Ş., Şal, S., Baranak, M. and Boz, İ.: α-olefin selectivity of Fe–Cu–K catalysts in Fischer-Tropsch synthesis: Effects of catalyst composition and process conditions. Chemical Engineering Journal.181 (2012) 581–589. 10.1016/j.cej.2011.11.094Suche in Google Scholar
4. Tao, Z. C., Yang, Y., Wan, H. W., Li, T. Z., An, X., Xiang, H. W. and Li, Y. W.: Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst. Catalysis letter.114 (2007) 161–168. 10.1007/s10562-007-9060-6Suche in Google Scholar
5. Yang, Y., Xiang, H.-W., Tian, L., Wang, H., Zhang, C.-H., Tao, Z.-C., Xu, Y.-Y., Zhong, B. and Li, W.: Structure and Fischer-Tropsch performance of iron–manganese catalyst incorporated with SiO2. Applied Catalysis A: General.284 (2005) 105–122. 10.1016/j.apcata.2005.01.025Suche in Google Scholar
6. Malik, S., Ghosh, A. and Saha, B.: Optimal process condition for room temperature hetero-aromatic nitrogen base promoted chromic acid oxidation of p-chlorobenzaldehyde to p-chlorobenzoic acid in aqueous micellar medium at atmospheric pressure. Tenside Surfactants Detergents.53 (2016) 94–104. 10.3139/113.110414Suche in Google Scholar
7. Malik, S. and Saha, B.: Combination of best promoter and micellar catalyst for chromic acid oxidation of d-arabinose in aqueous media at room temperature. Tenside Surfactants Detergents.52 (2015) 502–511. 10.3139/113.110403Suche in Google Scholar
8. Sharrah, M. L. and Feighner, G. C.: Synthesis of Dodecylbenzen-Synthetic Detergent Intermediate. Industrial & Engineering Chemistry.46 (1954) 248–254. 10.1021/ie50530a020Suche in Google Scholar
9. Olson, A.: Alkylation of Aromatics with 1-Alkenes. Industrial & EngineeringChemistry.52 (1960) 833–836. 10.1021/ie50610a023Suche in Google Scholar
10. Blanchard, L. A., Hancu, D., Beckman, E. J. and Brennecke, J. F.: Green processing using ionic liquids and CO2. Nature.399 (1999) 28. 10.1038/19887Suche in Google Scholar
11. Zhao, Z. K., Qiao, W. H., Wang, G. R., Li, Z. S. and Cheng, L. B.: Alkylation of α-methylnaphthalene with long-chain alkenes catalyzed by butylpyridinium bromochloroaluminate ionic liquids. Journal of Molecular Catalysis A: Chemical.231 (2005) 137–143. 10.1016/j.molcata.2005.01.010Suche in Google Scholar
12. Wang, H., Zhang, G. R., Liu, Y. Z., Luo, Y. W. and Lu, J. X.: Electrocarboxylation of activated olefins in ionic liquid BMIMBF4. Electrochemistry Communications.9 (2007) 2235–2239. 10.1016/j.elecom.2007.06.031Suche in Google Scholar
13. Yoo, K., Namboodiri, V. V., Varma, R. S. and Smirniotis, P. G.: Ionic liquid catalyzed alkylation of isobutane with 2-butene. Journal of catalysis.222 (2004) 511–519. 10.1016/j.jcat.2003.11.018Suche in Google Scholar
14. Qiao, C. Z., Cai, Y. H. and Guo, Q. H.: Benzene alkylation with long chain olefins catalyzed by ionic liquids: a review. Frontiers of Chemical Engineering in China.2 (2008) 346. 10.1007/s11705-008-0045-9Suche in Google Scholar
15. Qi, J., Luan, J. M., Hou, Q. J., Qiao, W. H. and Li, Z. S.: Molecular Self-Aggregation of Tetradecylbenzene Sodium Sulfonate Isomers. Journal of surfactants and detergents.13 (2010) 173–178. 10.1007/s11743-009-1163-1Suche in Google Scholar
16. Zhu, Y. P., Rosen, M. J., Morrall, S. W. and Tolls, J.: Surface properties of linear alkyl benzene sulfonates in hard river water. Journal of Surfactants and Detergents.1 (1998) 187–193. 10.1007/s11743-998-0018-2Suche in Google Scholar
17. Zhao, Y., Li, P., Li, Z., Qiao, W., Cheng, L. and Yang, J.: Structural Effect on Surface Properties of Alkylbenzenesulfonates Having Branched Chains. Petroleum Science and Technology.25 (2007) 1429–1434. 10.1080/10916460500528920Suche in Google Scholar
18. Song, X. W., Wang, L., Li, Z. Q., Luo, L., Zhang, L., Zhao, S. and Yu, J. Y.: Studies of Synthesis and Interfacial Properties of Sodium Branched-Alkylbenzenesulfonates. Journal of Dispersion Science and Technology.28 (2007) 825–828. 10.1080/01932690701346222Suche in Google Scholar
19. Zhao, C., Zhang, L., Wang, Y., Cheng, T., Yang, W. and Zhou, G.: Synthesis and Interfacial Tensions of Sodium p-Dimethyl Dodecylbenzene Sulfonates. Tenside Surfactants Detergents.55 (2018) 317–324. 10.3139/113.110569Suche in Google Scholar
20. Wang, Y. X., Zhao, Y., Hou, Q., Qi, J. and Li, Z. S.: Synthesis and interfacial properties of dialkylbenzenesulfonates for producting low interfacial tensions. Tenside Surfactants Detergents, 45 (2008) 25–29. 10.3139/113.100360Suche in Google Scholar
21. Xing, F. M., Liu, X. C., Niu, J. P. and Wang, X. Y.: Synthesis and Properties of Monododecyl Diphenyl Methane Disulfonate. Tenside Surfactants Detergents, 50 (2013) 209–213. 10.3139/113.110251Suche in Google Scholar
22. Cui, Z., Wu, L., Sun, M., Jiang, J. Z. and Wang, F.: Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery. Tenside Surfactants Detergents, 48 (2011) 408–414. 10.3139/113.110147Suche in Google Scholar
23. Kocal, J. A., Vora, B. V. and Imai, T.: Production of linear alkylbenzenes. Applied Catalysis A: General.221 (2001) 295–301. 10.1016/S0926-860X(01)00808-0Suche in Google Scholar
24. Wasserscheid, P. and Keim, W.: Ionic liquids-new “solutions” for transition metal catalysis. Angewandte Chemie International Edition.39 (2000) 3772–3789. 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5Suche in Google Scholar
25. Cross, J.: Anionic surfactants: analytical chemistry. New York (1998).Suche in Google Scholar
26. Alami, E., Beinert, G., Marie, P. and Zana, R.: Alkanediyl-α,ω-bis (dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface. Langmuir.9 (1993) 1465–1467. 10.1021/la00030a006Suche in Google Scholar
27. Song, L. D. and Rosen, M. J.: Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir.12 (1996) 1149–1153. 10.1021/la950508tSuche in Google Scholar
28. Li, H. Q., Yu, C. C., Chen, R., Li, J. and Li, J. X.: Novel ionic liquid-type Gemini surfactants: Synthesis, surface property and antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects.395 (2012) 116–124. 10.1016/j.colsurfa.2011.12.014Suche in Google Scholar
29. Zana, R.: Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. Journal of colloid and interface science.248 (2002) 203–220. PMid:16290524; 10.1006/jcis.2001.8104Suche in Google Scholar
30. Tsubone, K., Arakawa, Y. and Rosen, M.: J. Structural effects on surface and micellar properties of alkanediyl-α, ω-bis (sodium N-acyl-β-alaninate) gemini surfactants. Journal of colloid and interface science.262 (2003) 516–524. PMid:16256633; 10.1016/S0021-9797(03)00078-XSuche in Google Scholar
31. Shang, Y. Z., Wang, T. F., Han, X., Peng, C. J. and Liu, H. L.: Effect of ionic liquids Cn- mimBr on properties of gemini surfactant 12–3–12 aqueous solution. Industrial & Engineering Chemistry Research.49 (2010) 8852–8857. 10.1021/ie100896zSuche in Google Scholar
32. Song, Y., Li, Q. and Li, Y.: Effect of temperature and added counter ions on micelle formation of guanidine surfactants. Tenside Surfactants Detergents, 49 (2012) 390–393. 10.3139/113.110207Suche in Google Scholar
33. Li, G. F. and Coltd, C. S. G.: Low foam surfactant and application in industrial cleaning. Cleaning World.31 (2015) 28–32. 10.3969/j.issn.1671-8909Suche in Google Scholar
34. Rosen, M. J.: The relationship of structure to properties in surfactants. Journal of the American Oil Chemists’ Society.49 (1972) 293–297. 10.1007/BF02637577Suche in Google Scholar
35. Murray, B. S.: Interfacial rheology of food emulsifiers and proteins. Current opinion in colloid & interface science.7 (2002) 426–431. 10.1016/S1359-0294(02)00077-8Suche in Google Scholar
36. Zhang, J. C., Guo, L. L., Zhang, L., Dong, L. F., Zhang, L., Luo, L. and Zhao, S.: Surface dilational properties of sodium 4-(1-methyl)-alkyl benzene sulfonates: effect of alkyl chain length. Zeitschrift für Physikalische Chemie.227 (2013) 429–440. 10.1524/zpch.2013.0373Suche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants/Biosurfactants
- Antifungal Activity of Morpholine and Piperidine Based Surfactants
- Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils
- Environmental Chemistry
- Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media
- Synthesis
- Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants
- Synthesis of Alkylbenzene from Medium-Chain Olefins Catalyzed by an Acidic Ionic Liquid and the Surface Properties of Their Sulfonate
- Physical Chemistry
- Composition and Solubilization of the Microemulsion Systems Containing Triton X-100: Effects of Aqueous Composition and Oil-Water-Ratios
- Study of Structure of Water Droplets of Nonionic Polyoxyethylene (4) Lauryl Ether Reverse Micelles in the Presence of Sodium Cholate
- Binary Cationic Dyes-Counter Ion Extraction by Reverse Micelles
- Investigation of the Physiochemical Properties of Beauty Soaps Available in Pakistan
- Application
- Fabrication and Application of Cationic Polyacrylamide
- Study of Tribological Synergistic Effect of N-Containing Heterocyclic Borate Ester with Tricresyl Phosphate as Rapeseed Oil Additive
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants/Biosurfactants
- Antifungal Activity of Morpholine and Piperidine Based Surfactants
- Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils
- Environmental Chemistry
- Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media
- Synthesis
- Synthesis and Properties of Octadecyl Trimethyl Ammonium Polyacrylic Surfactants
- Synthesis of Alkylbenzene from Medium-Chain Olefins Catalyzed by an Acidic Ionic Liquid and the Surface Properties of Their Sulfonate
- Physical Chemistry
- Composition and Solubilization of the Microemulsion Systems Containing Triton X-100: Effects of Aqueous Composition and Oil-Water-Ratios
- Study of Structure of Water Droplets of Nonionic Polyoxyethylene (4) Lauryl Ether Reverse Micelles in the Presence of Sodium Cholate
- Binary Cationic Dyes-Counter Ion Extraction by Reverse Micelles
- Investigation of the Physiochemical Properties of Beauty Soaps Available in Pakistan
- Application
- Fabrication and Application of Cationic Polyacrylamide
- Study of Tribological Synergistic Effect of N-Containing Heterocyclic Borate Ester with Tricresyl Phosphate as Rapeseed Oil Additive