Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
-
Hossein Esmaeili
Abstract
The emulsion of hydrocarbon components in water is usually found in the wastewater of refineries. In this work, a mathematical modeling of the destabilization process of gas condensate droplets in water emulsions was constructed using the population balance equation, and the coalescence coefficient (agglomeration kernel) of different demulsifiers (KENON 20, KENON 4, KENON 2, CTAB, SDS, Span 80, Span 60, Polyamide, Polyacrylamide and an EO/PO block copolymer of dodecan-1-ol) was obtained. For modeling, it needs droplets size distribution before adding a demulsifier at time = 0 and after adding a demulsifier at time = 1 h and 2 h. For this purpose, the numerical method of Crank-Nicolson by MATLAB software was applied. Additionally, the growth of gas condensate droplets was modeled by the population balance, and the agglomeration kernel for each demulsifier with the help of two models (simple flow and sum of the volumes) was determined. Moreover, the dependency of the agglomeration kernel to time was obtained. The results showed that the accuracy of the sum of the volumes model was better than the simple flow model to describe destabilization of the emulsion with demulsifiers. Furthermore, the agglomeration kernel of demulsifiers increases with increasing the demulsification time.
Kurzfassung
Normalerweise liegt in den Raffinerie-Abwässern eine Emulsion von Kohlenwasserstoffkomponenten in Wasser vor. In dieser Arbeit wurde eine mathematische Modellierung des Destabilisierungsprozesses von Gaskondensattröpfchen in Wasseremulsionen unter Verwendung der Population-Balance-Gleichung erstellt und damit die Koaleszenzkoeffizienten (Agglomerationskern) verschiedener Demulgatoren (Kenon 20, Kenon 4, Kenon 2, CTAB, SDS, Span 80, Span 60, Polyamid, Polyacrylamid und Dodecan-1-ol-EO-PO-Blockcopolymer) bestimmt. Für die Modellerstellung wurde die Tröpfchengrößenverteilung vor der Demulgatorzugabe zur Zeit t = 0 und nach der Demulgatorzugabe zur Zeit t = 1 Stunde und t = 2 Stunden benötigt. Zu diesem Zweck wurde die numerische Methode der Crank-Nicolson-Software von MATLAB angewendet. Zusätzlich wurde das Wachstum von Gaskondensattröpfchen durch die Population-Balance modelliert und der Agglomerationskern für jeden Demulgator mit Hilfe von zwei Modellen (einfaches Strömungs- und Summe-der-Volumina-Modell) bestimmt. Darüber hinaus wurde die Abhängigkeit des Agglomerationskern (Koaleszenzkoeffizienten) von der Zeit erhalten. Die Ergebnisse zeigten, dass die Genauigkeit des Summe-des-Volumenmodells besser war als die des einfachen Strömungsmodells, um die Destabilisierung der Emulsion mit Demulgatoren zu beschreiben. Darüber hinaus nimmt der Agglomerationskern (Koaleszenzkoeffizienten) von Demulgatoren mit zunehmender Demulgierzeit zu.
References
1. Berrin, T. and Orhan, S.: Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation, Water Air Soil Pollut.169 (2006) 293–302. 10.1007/s11270-006-3110-3Suche in Google Scholar
2. Rani, S. I.: Study on demulsifier formulation for treating Malaysian crude oil emulsion. university technologi Malaysia, PhD thesis (2006).Suche in Google Scholar
3. Taherian, A. R., Fustier, P. and Ramaswamy, H. S.: Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions, J. Food Eng.77 (2006) 687–696. 10.1016/j.jfoodeng.2005.06.073Suche in Google Scholar
4. Bengoechea, C., Romero, A., Aguilar, J. M., Cordobés, F. and Guerrero, A.: Temperature and pH as factors influencing droplet size distribution and linear viscoelasticity of O/W emulsions stabilized by soy and gluten proteins, Food Hydrocoll.24 (2010) 783–791. 10.1016/j.foodhyd.2010.04.005Suche in Google Scholar
5. Kang, W., Guo, L., Fan, H., Meng, L. and Li, Y.: Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion, J. Pet. Sci. Eng.81 (2012) 177–181. 10.1016/j.petrol.2011.12.011Suche in Google Scholar
6. Goldblatt, M. E., Gucciardi, J. M., Huban, C. M., Vasconcellos, S. R. and Liao, W. P.: New polyelectrolyte emulsion breaker improves oily wastewater cleanup at lower usage rates. Water and Process Technologies, 2006.Suche in Google Scholar
7. Esmaeili, H., Esmaeilzadeh, F. and Mowla, D.: Effect of surfactant on stability and size distribution of gas condensate droplets in water, J. Chem. Eng. Data.59 (2014) 1461–1467. 10.1021/je4009574Suche in Google Scholar
8. Razi, M., Rahimpour, M. R., Jahanmiri, A. and Azad, F.: Effect of a Different Formulation of Demulsifiers on the Efficiency of Chemical Demulsification of Heavy Crude Oil, J. Chem. Eng. Data.56 (2011) 2936–2945. 10.1021/je2001733Suche in Google Scholar
9. Droppo, I. G.; Flanigan, D. T.; Leppard, G. G.; Jaskot, C.; Liss, S. N.: Floc stabilization for multiple microscopic techniques, Appl. Environ. Microbiol.62 (1996) 3508–3515. PMid:16535412;10.1128/aem.62.9.3508-3515.1996Suche in Google Scholar PubMed PubMed Central
10. Koh, A., Gillies, G., Gore, J. and Saunders, B. R.: Flocculation and coalescence of oil-in-water poly(dimethylsiloxane) emulsions, J Colloid Interface Sci.227 (2000) 390–397. PMid:10873325; 10.1006/jcis.2000.6909Suche in Google Scholar PubMed
11. Jurado, E., Bravo, V., Camacho, F., Vicaria, M. J. and Fernández-Arteaga, A.: Estimation of the distribution of droplet size, interfacial area and volume in emulsions, Colloids Surf., A: Physicochem. Eng. Aspects.295 (2007) 91–98. 10.1016/j.colsurfa.2006.08.037Suche in Google Scholar
12. Tcholakova, S., Denkov, N., Ivanov, I. B. and Marinov, R.: Evaluation of Short-Term and Long-Term stability of emulsions by centrifugation and NMR, Bulg. J. Phys.31 (2004) 96–110.Suche in Google Scholar
13. Kang, W., Guo, L., Fan, H., Meng, L. and Li, Y.: Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion, J. Petrol. Sci. Eng., 81 (2012) 177–181. 10.1016/j.petrol.2011.12.011Suche in Google Scholar
14. Hempoonsert, J., Tansel, B. and Laha, Sh.: Effect of temperature and pH on droplet aggregation and phase separation characteristics of flocs formed in oil–water emulsions after coagulation, Colloids Surf. A Physicochem. Eng. Asp.353 (2010) 37–42. 10.1016/j.colsurfa.2009.10.016Suche in Google Scholar
15. Ruiz, M. C. and Padilla, R.: Separation of liquid-liquid dispersions in a deep-layer gravity settler: Part II. Mathematical modeling of the settler, Hydrometallurgy.42 (1996) 281–291. 10.1016/0304-386X(95)00096-YSuche in Google Scholar
16. Gomes, E. F., Guimarães, M. M. L. and Ribeiro, L. M.: Numerical modelling of a gravity settler in dynamic conditions, Adv. Eng. Softw.38 (2007) 810–817. 10.1016/j.advengsoft.2006.08.033Suche in Google Scholar
17. Cunha, R. E. P., Fortuny, M., Dariva, C. and Santos, A. F.: Mathematical Modeling of the Destabilization of Crude Oil Emulsions Using Population Balance Equation, Ind. Eng. Chem. Res.47 (2008) 7094–7103. 10.1021/ie800391vSuche in Google Scholar
18. Esmaeili, H., Esmaeilzadeh, F. and Mowla, D.: Destabilization and Separation of Gas Condensate from Wastewater using Different Surfactant Demulsifiers, Tenside Surfactants Detergents.55 (2018) 153–161. 10.3139/113.110552Suche in Google Scholar
19. Grimes, B. A.: Population Balance Model for Batch Gravity Separation of Crude Oil and Water Emulsions. Part I: Model Formulation, J. Dispers. Sci. Technol.33 (2012) 578–590. 10.1080/01932691.2011.574946Suche in Google Scholar
20. McCoy, B. J. and Madras, G.: Analytical solution for a population balance equation with aggregation and fragmentation, Chem. Eng. Sci.58 (2003) 3049–3051. 10.1016/S0009-2509(03)00159-3Suche in Google Scholar
21. Wang, T., Wang, J. and Jin, Y.: A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, Chem. Eng. Sci.58 (2003) 4629–4637. 10.1016/j.ces.2003.07.009Suche in Google Scholar
22. Hengel, E. I. V.v.d., Deen, N. G. and Kuipers, J. A. M.: Application of Coalescence and Breakup Models in a Discrete Bubble Model for Bubble Columns, Ind. Eng. Chem. Res.44 (2005) 5233–5245. 10.1021/ie0492449Suche in Google Scholar
23. Lage, P. L. C.: Comments on the “An analytical solution to the population balance equation with coalescence and breakage–the special case with constant number of particles” by D.P. Patil and J.R.G. Andrews [Chemical Engineering Science 53(3) 599–601], Chem. Eng. Sci.57 (2002) 4253–4254. 10.1016/S0009-2509(02)00369-XSuche in Google Scholar
24. Georgieva, P., Meireles, M. J., Feyo de Azevedo, S.: Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena, Chem. Eng. Sci.58 (2003) 3699–3713. 10.1016/S0009-2509(03)00260-4Suche in Google Scholar
25. Hackbusch, W., John, V., Khachatryan, A. and Suciu, C.: A numerical method for the simulation of an aggregation-driven Population balance system, Int. J. Numer. Methods Fluids.69 (2006) 1646–1660. 10.1002/fld.2656Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K