Startseite Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method

  • Hossein Esmaeili , Feridun Esmaeilzadeh und Dariush Mowla
Veröffentlicht/Copyright: 7. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The emulsion of hydrocarbon components in water is usually found in the wastewater of refineries. In this work, a mathematical modeling of the destabilization process of gas condensate droplets in water emulsions was constructed using the population balance equation, and the coalescence coefficient (agglomeration kernel) of different demulsifiers (KENON 20, KENON 4, KENON 2, CTAB, SDS, Span 80, Span 60, Polyamide, Polyacrylamide and an EO/PO block copolymer of dodecan-1-ol) was obtained. For modeling, it needs droplets size distribution before adding a demulsifier at time = 0 and after adding a demulsifier at time = 1 h and 2 h. For this purpose, the numerical method of Crank-Nicolson by MATLAB software was applied. Additionally, the growth of gas condensate droplets was modeled by the population balance, and the agglomeration kernel for each demulsifier with the help of two models (simple flow and sum of the volumes) was determined. Moreover, the dependency of the agglomeration kernel to time was obtained. The results showed that the accuracy of the sum of the volumes model was better than the simple flow model to describe destabilization of the emulsion with demulsifiers. Furthermore, the agglomeration kernel of demulsifiers increases with increasing the demulsification time.

Kurzfassung

Normalerweise liegt in den Raffinerie-Abwässern eine Emulsion von Kohlenwasserstoffkomponenten in Wasser vor. In dieser Arbeit wurde eine mathematische Modellierung des Destabilisierungsprozesses von Gaskondensattröpfchen in Wasseremulsionen unter Verwendung der Population-Balance-Gleichung erstellt und damit die Koaleszenzkoeffizienten (Agglomerationskern) verschiedener Demulgatoren (Kenon 20, Kenon 4, Kenon 2, CTAB, SDS, Span 80, Span 60, Polyamid, Polyacrylamid und Dodecan-1-ol-EO-PO-Blockcopolymer) bestimmt. Für die Modellerstellung wurde die Tröpfchengrößenverteilung vor der Demulgatorzugabe zur Zeit t = 0 und nach der Demulgatorzugabe zur Zeit t = 1 Stunde und t = 2 Stunden benötigt. Zu diesem Zweck wurde die numerische Methode der Crank-Nicolson-Software von MATLAB angewendet. Zusätzlich wurde das Wachstum von Gaskondensattröpfchen durch die Population-Balance modelliert und der Agglomerationskern für jeden Demulgator mit Hilfe von zwei Modellen (einfaches Strömungs- und Summe-der-Volumina-Modell) bestimmt. Darüber hinaus wurde die Abhängigkeit des Agglomerationskern (Koaleszenzkoeffizienten) von der Zeit erhalten. Die Ergebnisse zeigten, dass die Genauigkeit des Summe-des-Volumenmodells besser war als die des einfachen Strömungsmodells, um die Destabilisierung der Emulsion mit Demulgatoren zu beschreiben. Darüber hinaus nimmt der Agglomerationskern (Koaleszenzkoeffizienten) von Demulgatoren mit zunehmender Demulgierzeit zu.


Correspondence address, Dr. Hossein Esmaeili, Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz, Iran, 7134851154, E-Mail:

Dr. Hossein Esmaeili, Assistant professor of chemical engineering at Islamic Azad University of Bushehr, IranScopus ID is: 56730285700 and I have 16 papers in Scopus.

Dr. Feridun Esmaeilzadeh, Full Professor of Chemical engineering at Shiraz University, IranScopus ID: 6603203765, He has 145 Papers in Scopus.

Dr. Dariush Mowla, Full Professor of Chemical engineering at Shiraz University, IranScopus ID: 6603710809, He has 139 Papers in Scopus.


References

1. Berrin, T. and Orhan, S.: Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation, Water Air Soil Pollut.169 (2006) 293302. 10.1007/s11270-006-3110-3Suche in Google Scholar

2. Rani, S. I.: Study on demulsifier formulation for treating Malaysian crude oil emulsion. university technologi Malaysia, PhD thesis (2006).Suche in Google Scholar

3. Taherian, A. R., Fustier, P. and Ramaswamy, H. S.: Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions, J. Food Eng.77 (2006) 687696. 10.1016/j.jfoodeng.2005.06.073Suche in Google Scholar

4. Bengoechea, C., Romero, A., Aguilar, J. M., Cordobés, F. and Guerrero, A.: Temperature and pH as factors influencing droplet size distribution and linear viscoelasticity of O/W emulsions stabilized by soy and gluten proteins, Food Hydrocoll.24 (2010) 783791. 10.1016/j.foodhyd.2010.04.005Suche in Google Scholar

5. Kang, W., Guo, L., Fan, H., Meng, L. and Li, Y.: Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion, J. Pet. Sci. Eng.81 (2012) 177181. 10.1016/j.petrol.2011.12.011Suche in Google Scholar

6. Goldblatt, M. E., Gucciardi, J. M., Huban, C. M., Vasconcellos, S. R. and Liao, W. P.: New polyelectrolyte emulsion breaker improves oily wastewater cleanup at lower usage rates. Water and Process Technologies, 2006.Suche in Google Scholar

7. Esmaeili, H., Esmaeilzadeh, F. and Mowla, D.: Effect of surfactant on stability and size distribution of gas condensate droplets in water, J. Chem. Eng. Data.59 (2014) 14611467. 10.1021/je4009574Suche in Google Scholar

8. Razi, M., Rahimpour, M. R., Jahanmiri, A. and Azad, F.: Effect of a Different Formulation of Demulsifiers on the Efficiency of Chemical Demulsification of Heavy Crude Oil, J. Chem. Eng. Data.56 (2011) 29362945. 10.1021/je2001733Suche in Google Scholar

9. Droppo, I. G.; Flanigan, D. T.; Leppard, G. G.; Jaskot, C.; Liss, S. N.: Floc stabilization for multiple microscopic techniques, Appl. Environ. Microbiol.62 (1996) 35083515. PMid:16535412;10.1128/aem.62.9.3508-3515.1996Suche in Google Scholar PubMed PubMed Central

10. Koh, A., Gillies, G., Gore, J. and Saunders, B. R.: Flocculation and coalescence of oil-in-water poly(dimethylsiloxane) emulsions, J Colloid Interface Sci.227 (2000) 390397. PMid:10873325; 10.1006/jcis.2000.6909Suche in Google Scholar PubMed

11. Jurado, E., Bravo, V., Camacho, F., Vicaria, M. J. and Fernández-Arteaga, A.: Estimation of the distribution of droplet size, interfacial area and volume in emulsions, Colloids Surf., A: Physicochem. Eng. Aspects.295 (2007) 9198. 10.1016/j.colsurfa.2006.08.037Suche in Google Scholar

12. Tcholakova, S., Denkov, N., Ivanov, I. B. and Marinov, R.: Evaluation of Short-Term and Long-Term stability of emulsions by centrifugation and NMR, Bulg. J. Phys.31 (2004) 96110.Suche in Google Scholar

13. Kang, W., Guo, L., Fan, H., Meng, L. and Li, Y.: Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion, J. Petrol. Sci. Eng., 81 (2012) 177181. 10.1016/j.petrol.2011.12.011Suche in Google Scholar

14. Hempoonsert, J., Tansel, B. and Laha, Sh.: Effect of temperature and pH on droplet aggregation and phase separation characteristics of flocs formed in oil–water emulsions after coagulation, Colloids Surf. A Physicochem. Eng. Asp.353 (2010) 3742. 10.1016/j.colsurfa.2009.10.016Suche in Google Scholar

15. Ruiz, M. C. and Padilla, R.: Separation of liquid-liquid dispersions in a deep-layer gravity settler: Part II. Mathematical modeling of the settler, Hydrometallurgy.42 (1996) 281291. 10.1016/0304-386X(95)00096-YSuche in Google Scholar

16. Gomes, E. F., Guimarães, M. M. L. and Ribeiro, L. M.: Numerical modelling of a gravity settler in dynamic conditions, Adv. Eng. Softw.38 (2007) 810817. 10.1016/j.advengsoft.2006.08.033Suche in Google Scholar

17. Cunha, R. E. P., Fortuny, M., Dariva, C. and Santos, A. F.: Mathematical Modeling of the Destabilization of Crude Oil Emulsions Using Population Balance Equation, Ind. Eng. Chem. Res.47 (2008) 70947103. 10.1021/ie800391vSuche in Google Scholar

18. Esmaeili, H., Esmaeilzadeh, F. and Mowla, D.: Destabilization and Separation of Gas Condensate from Wastewater using Different Surfactant Demulsifiers, Tenside Surfactants Detergents.55 (2018) 153161. 10.3139/113.110552Suche in Google Scholar

19. Grimes, B. A.: Population Balance Model for Batch Gravity Separation of Crude Oil and Water Emulsions. Part I: Model Formulation, J. Dispers. Sci. Technol.33 (2012) 578590. 10.1080/01932691.2011.574946Suche in Google Scholar

20. McCoy, B. J. and Madras, G.: Analytical solution for a population balance equation with aggregation and fragmentation, Chem. Eng. Sci.58 (2003) 30493051. 10.1016/S0009-2509(03)00159-3Suche in Google Scholar

21. Wang, T., Wang, J. and Jin, Y.: A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, Chem. Eng. Sci.58 (2003) 46294637. 10.1016/j.ces.2003.07.009Suche in Google Scholar

22. Hengel, E. I. V.v.d., Deen, N. G. and Kuipers, J. A. M.: Application of Coalescence and Breakup Models in a Discrete Bubble Model for Bubble Columns, Ind. Eng. Chem. Res.44 (2005) 52335245. 10.1021/ie0492449Suche in Google Scholar

23. Lage, P. L. C.: Comments on the “An analytical solution to the population balance equation with coalescence and breakage–the special case with constant number of particles” by D.P. Patil and J.R.G. Andrews [Chemical Engineering Science 53(3) 599–601], Chem. Eng. Sci.57 (2002) 42534254. 10.1016/S0009-2509(02)00369-XSuche in Google Scholar

24. Georgieva, P., Meireles, M. J., Feyo de Azevedo, S.: Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena, Chem. Eng. Sci.58 (2003) 36993713. 10.1016/S0009-2509(03)00260-4Suche in Google Scholar

25. Hackbusch, W., John, V., Khachatryan, A. and Suciu, C.: A numerical method for the simulation of an aggregation-driven Population balance system, Int. J. Numer. Methods Fluids.69 (2006) 16461660. 10.1002/fld.2656Suche in Google Scholar

Received: 2018-07-21
Accepted: 2018-08-15
Published Online: 2019-03-07
Published in Print: 2019-03-15

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110609/html
Button zum nach oben scrollen