Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
-
Pragya Tank
Abstract
The viscosity, specific viscosity, and fluidity of Cu(II) surfactant complexes derived from mustard oil with urea/thiourea/2-amino-6-chloro benzothiazole in a non-aqueous solvent has been determined at a constant temperature of 303.15 K. The results were used to determine the critical micelle concentration (CMC), soap complex-solvent interactions and the effect of chain length of the surfactant molecule on various parameters. The conclusions with regard to solute-solute and solute-solvent interaction have been discussed in terms of well-known Moulik and Jones-Dole equations. The effect of surfactant concentration on the viscosity of the solution in non-polar solvent has been discussed. The observations suggested that the structure breaking effect by the solute on the solvent molecules is more prominent above CMC as compared to below CMC after the formation of the micelles. This information plays a role in various industrial and biological applications.
Kurzfassung
Die Viskosität, die spezifische Viskosität und die Fließfähigkeit von Cu(II)-Tensidkomplexen, wurden bei einer konstanten Temperatur von 303,15 K gemessen. Die Cu(II)-Tensidkomplexe wurden aus Senföl mit Harnstoff/Thioharnstoff/2-Amino-6-chlorbenzothiazol in einem nichtwässrigen Lösungsmittel erzeugt. Mit den Messergebnissen wurden die kritische Mizellenbildungskonzentration (CMC), die Wechselwirkungen zwischen dem Seifenkomplex und dem Lösungsmittel sowie die Wirkung der Kettenlänge des Tensidmoleküls auf verschiedene Parameter bestimmt. Die Schlussfolgerungen bezüglich der Wechselwirkungen von Gelöstem-Gelöstem und Gelöstem-Lösungsmittel wurden mit Hilfe der bekannten Gleichungen von Moulik und Jones-Dole diskutiert. Der Einfluss der Tensidkonzentration auf die Viskosität der Lösung in einem unpolaren Lösungsmittel wurde diskutiert. Die Beobachtungen legten nahe, dass der Strukturbruch des gelösten Stoffes an den Lösungsmittelmolekülen oberhalb von CMC im Vergleich zu unterhalb von CMC nach der Bildung der Mizellen stärker hervortritt. Diese Informationen spielen eine Rolle in verschiedenen industriellen und biologischen Anwendungen.
References
1. Banipal, P. K., Chakal, A. K., Banipal, T. S.: Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15–318.15 K), J. Chem. Thermodynamic.41 (2009) 452–483. 10.1016/j.jct.2008.11.009Suche in Google Scholar
2. Savaroglu, G., Ozdemir, M.: Apparent molar volume and apparent molar isentropic compressibility of glycerol in fructose water at different temperature, J. Mol. Liquids.137 (2008) 51–57. 10.1016/j.molliq.2007.03.007Suche in Google Scholar
3. Tank, P., Sharma, A. K., Sharma, R.: Thermal Behaviour and Kinetics of Copper (II) Soaps and Complexes Derived from Mustard and Soyabean Oil, J. Anal. Pharm. Res.4(2) (2017) 1–5. 10.15406/japlr.2017.04.00102Suche in Google Scholar
4. Sharma, R., Bhutra, R. and Khan, S.: Micellar Behaviour of Copper Surfactants Derived from Fresh (Untreated) Sesame Oil and Used (Treated at High Temperature) Sesame Oil, Tenside Surf Det.47106–112. 10.3139/113.110059Suche in Google Scholar
5. Punitha, S. and Uvarani, R.: Physico-chemical studies on some saccharides in aqueous cellulose solutions at different temperatures-Acoustical and FTIR analysis J. Saudi Chem. Soc.18 (2014) 657–665. 10.1016/j.jscs.2014.01.008Suche in Google Scholar
6. Dash, A. K. and Paikaray, R.: Acoustical study on ternary mixture of dimethyl acetamide (DMAC) in diethyl ether and isobutyl methyl ketone at different frequencies, Phys. Chem. Liq.51(6) (2013) 749–763. 10.1080/00319104.2013.795860Suche in Google Scholar
7. Sharma, A. K., Saxena, M. and Sharma, R.: Ultrasonic Studies of Cu(II) Soaps Derived from Mustard and Soya Bean Oils. Tenside Surfactants Detergents:55(2) (2018) 127–134. 10.3139/113.110544Suche in Google Scholar
8. Tank, P. and Sharma, R., Sharma, A. K.: Studies of Ultrasonic and acoustic parameters of complexes derived from Copper(II) surfactant of mustard oil with N and S atoms containing ligands in non-aqueous media (benzene) at 303.15 K. J. Acous. Soc. Ind.44(2) (2017) 87–99.Suche in Google Scholar
9. Sharma, S., Sharma, R. and Sharma, A. K.: Synthesis, Characterization, and thermal degradation of Cu(II) Surfactants for sustainable green chem. Asian J. Green Chem., 2(2) (2017) 129–140. 10.22631/ajgc.2017.95559.1015Suche in Google Scholar
10. Sharma, A. K., Sharma, S. and Sharma, R.: Thermal degradation of Cu(II) metallic Soaps and their Characterizations. A Pharmaceutical Application. Chronicles Pharma. Sci.1(5) (2017) 312–319.Suche in Google Scholar
11. Sharma, S., Sharma, R., Heda, L. C. and Sharma, A. K.: Kinetic parameters and Photo Degradation studies of Copper Soap derived from Soybean Oil using ZnO as a Photo catalyst in Solid and Solution Phase. J. Inst. Chemists (India)89 (4) (2017) 119–136.Suche in Google Scholar
12. Khan, S., Sharma, R., Sharma, A. K.: Antifungal Activities of Copper Surfactants derived from Neem (Azadirecta Indica) and Karanj (Pongamiapinnata) Oils: A Pharmaceutical Application. Glob. J. Pharmaceu. Sci.3(4) (2017) 1–6.Suche in Google Scholar
13. Tank, P., Sharma, R., Sharma, A. K.: TGA and Other Studies of Cu Surfactants derived from Edible Oils “ISBN 978-620-2-01161-7”LAP LAMBERT Academic Germany (2017).Suche in Google Scholar
14. Singh, S. and Bahadur, I.: Density and speed of sound of 1-ethyl-3-methylimidazolium ethylsulphate with acetic or propionic acid at different temperatures, J. Mol. Liq.199 (2014) 518–523. 10.1016/j.molliq.2014.09.055Suche in Google Scholar
15. Oswal, S. L., Dave, J. P.: Viscosity of Nonelectrolyte Liquid Mixtures binary mixtures of n-Hexane with Alkanoates and Bromoalkanoates, Znt. J. Thermophys.13 (1992) 943–955. 10.1007/BF01141208Suche in Google Scholar
16. Jahagirdar, B. V., Arbad, B. R., Walvekar, A. A., Shankarwer, A. G. and Lande, M.: Studies in partial molar volumes, partial molar compressibilities and viscosity B coefficients of caffeine in water at four temperatures, J. mol. liq.85 (2000) 361–373. 10.1016/S0167-7322(00)89019-4Suche in Google Scholar
17. Oswal, S. L., Patel, B. M., Shah, H. R., Oswal, P.: Viscosity of Nonelectrolyte Liquid Mixtures. 111. Binary Mixtures of Methyl Methacrylate with Hydrocarbons, Haloalkanes, and Alkylamines, Int. J. Thermophys.15 (1994) 627–645. 10.1007/BF01563791Suche in Google Scholar
18. Jahagirdar, B. V., Arbad, B. R., Walvekar, A. A., Shankarwer, A. G. and Lande, M.: Studies in partial molar volumes, partial molar compressibilities and viscosity B-coefficients of caffeine in water at four temperatures, J. Mol. Liq.85 (2000) 361–373. 10.1016/S01677322(00)89019-4Suche in Google Scholar
19. Srinivasu, J. V. and Narendra, K.: Study of volumetric and thermodynamic properties of binary mixtures 1,4-butanediol with methylpyridine isomers at different temperatures, J. Mol. Liq.216 (2016) 455–465. 10.1016/j.molliq.2016.01.071Suche in Google Scholar
20. Pal, A., Chauhan, N. and Kumar, S.: Interaction of tripeptide with glucose in aqueous solution at various temperatures: A volumetric and ultrasonic study, Thermochim Acta.509 (2010) 24–32. 10.1016/j.tca.2010.05.016Suche in Google Scholar
21. Singh, S. and Bahadur, I.: Density and speed of sound of 1-ethyl-3-methylimidazolium ethylsulphate with acetic or propionic acid at different temperatures, J. Mol. Liq.199 (2014) 518–523. 10.1016/j.molliq.2014.09.055Suche in Google Scholar
22. Jones, G. and Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to Barium chloride, J. Am. Chem. Soc.51 (1929) 2950–2964,. 10.1021/ja01385a012Suche in Google Scholar
23. Babak, M., Ali, S., Hamid, R., Mortaheb, M., Mirzaei, M. M. and Fatemeh, S.: Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures, J. Chem. Thermodyn.41 (2009) 323–329. 10.1016/j.jct.2008.09.001Suche in Google Scholar
24. Oswal, S. L.: Studies on Density, Viscosity, Dielectric Constant and Refractive Index of Binary Mixtures of Esters in Benzene and Carbon Tetrachloride, Can. J. Chem.66 (1988) 111–116. 10.1139/v88-017Suche in Google Scholar
25. Pandey, J. D., Misra, K., Shukla, A., Mushran, V. and Rai, R. D.: Apparent molal volume, apparent molal compressibility, verification of jones-Dole equation and thermodynamic studies of aqueous urea and its derivatives at 25, 30, 35 and 40°C, Thermochim Acta.117 (1987) 245–259. 10.1016/0040-6031(87)88119-4Suche in Google Scholar
26. Fort, R. J., Moore, W. R.: Viscosity of Binary Liquid Mixtures, Trans. Faraday Soc.6’2 (1966) 1112–1119. 10.1039/tf9666201112Suche in Google Scholar
27. Sharma, A. K., Saxena, M., Sharma, R.: Ultrasonic studies of Cu(II) Soaps derived from Mustard and Soybean oils. J. Pure Appl. Ultrason39 (3) (2017) 92–99.Suche in Google Scholar
28. Arvind, R. Mahajan and sunil, R. mirgane: Volumetric and thermodynamic studies of molecular interactions in binary liquid mixtures of N-alkanes with heptan-2-ol at 298.15 K comparison with Prigoline–Flory theory, Chem. Eng. Commun.200 (2013) 1666–1682. 10.1080/00986445.2012.749785Suche in Google Scholar
29. Tank, P., SharmaR., Sharma, A. K.: A Pharmaceutical approach & Antifungal activities of Copper Soaps with their N & S donor complexes derived from Mustard and Soyabean oils. Glob. J Pharmaceu. Sci.3(4) (2017) 1–6.Suche in Google Scholar
30. Sharma, R., Tank, P., Saxena, M., Bhutra, R. and Ojha, K. G.: Synthesis and Characterisation of Antifungal Agents Containing Copper(II) Soaps and Derived from Mustard and Soyabean Oil, Tenside Surf Det.45 (2008) 87–92. 10.3139/113.100366Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K