Test Method Dependent Efficacy of Antibacterial Textiles
-
Britta Hilgenberg
Abstract
Within the course of this investigation five different antibacterial textiles have been tested with four important standards for assessment of antibacterial efficacy (AATCC 147, ASTM E2149, DIN EN ISO 20645 and DIN EN ISO 20743). For some combinations of conducted method and utilized antibacterial textile the results revealed unexpected variations in antibacterial efficacy. This fact could lead to misperception of antibacterial textile efficacy which in turn could result in hygiene deficits for operators or economic losses for manufacturers. Accordingly, there is a strong need for a consistent method for evaluation of antibacterial efficacy so that the comparability of antibacterial textiles and particularly the significance of antibacterial efficacy will be improved.
Kurzfassung
Im Rahmen dieser Arbeit wurde die antibakterielle Wirksamkeit von fünf verschiedenen antibakteriellen Textilien mit vier bedeutenden Standards (AATCC 147, ASTM E2149, DIN EN ISO 20645 und DIN EN ISO 20743) untersucht. Die Ergebnisse einiger Kombinationen von durchgeführter Methode und eingesetztem Textil offenbarten unerwartete Abweichungen in der antibakteriellen Wirksamkeit. Diese Tatsache könnte zu einer Fehleinschätzung von antibakteriellen Textilien führen, woraus wiederum Hygienedefizite für den Anwender sowie wirtschaftliche Schäden für den Hersteller resultieren könnten. Dementsprechend besteht ein hoher Bedarf an einer einheitlichen Methode für die Untersuchung der antibakteriellen Wirksamkeit, so dass die Vergleichbarkeit von antibakteriellen Textilien und insbesondere die Aussagekraft der antibakteriellen Wirksamkeit verbessert werden.
References
1. Windler, L., Height, M. and Nowack, B.: Comparative evaluation of antimicrobials for textile applications Environ Int53 (2013) 62–73. PMid:23347947; 10.1016/j.envint.2012.12.010Suche in Google Scholar PubMed
2. Lazary, A., Weinberg, I., Vatine, J.-J., Jefidoff, A., Bardenstein, R., Borkow, G. and Ohana, N.: Reduction of healthcare-associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens Int J Infect Dis24 (2014) 23–39. PMid:24614137; 10.1016/j.ijid.2014.01.022Suche in Google Scholar PubMed
3. Fijan, S. and Turk, S. S.: Hospital textiles, are they a possible vehicle for healthcare-associated infections? Int J Environ Res Public Health9(9) (2012) 3330–3343. PMid:23202690; 10.3390/ijerph9093330Suche in Google Scholar PubMed PubMed Central
4. Neely, A. N.: A survey of Gram-negative bacteria survival on hospital fabrics and plastics J Burn Care Rehabil21(6) (2000) 523–527. PMid:11194806; 10.1097/00004630-200021060-00009Suche in Google Scholar PubMed
5. Koca, O.; Altoparlak, U.; Ayyildiz, A. and Kaynar, H.: Persistence of nosocomial pathogens on various fabrics Eurasian J Med44 (1) (2012) 28–31. 10.5152/eajm.2012.06Suche in Google Scholar PubMed PubMed Central
6. Kramer, A., Guggenbichler, P., Heldt, P., Jünger, M., Ladwig, A., Thierbach, H., Weber, U. and Daeschlein, G.: Hygienic relevance and risk assessment of antimicrobial-impregnated textiles Curr Probl Dermatol33 (2006) 78–109. 10.1159/000093938Suche in Google Scholar PubMed
7. Bobbarala, V.: A search for antimicrobial agentsInTech, Rijeka (2012). PMid:23464476; 10.5772/1085Suche in Google Scholar
8. Hipler, U.C. and Elsner, P.: Biofunctional textiles and the skinKarger AG, Basel (2006). 10.1159/isbn.978-3-318-01349-8Suche in Google Scholar
9. Tomšič, B., Simončič, B., Orel, B., Černe, L., Tavčer, P. F., ZorkoIvan, M., Ivan, J., Aljaž, V. and Kovač, J.: Sol–gel coating of cellulose fibres with antimicrobial and repellent properties Journal of Sol-Gel Science and Technology47 (1) (2008) 44–57. 10.1007/s10971-008-732-1Suche in Google Scholar
10. Page, K., Wilson, M. and Parkin, I. P.: Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections J Mater Chem19 (2009) 3819–3831. 10.1039/B818698GSuche in Google Scholar
11. Kaur, R. and Liu, S.: Antibacterial surface design – Contact kill Progress in Surface Science91 (3) (2016) 136–153. 10.1016/j.progsurf.2016.09.001Suche in Google Scholar
12. McDonnell, G. and Russell, D.: Antiseptics and disinfectants: activity, action, and resistance Clin Microbiol Rev12 (1) (1999) 147–79. PMid:9880479;Suche in Google Scholar
13. Dinning, A. J., Al-Adham, I. S. I., Austin, P., Charlton, M. and Collier, P. J.: Pyrithione biocide interactions with bacterial phospholipid head groups J Appl Microbiol85 (1) (1998) 132–140. PMid:9721663; 10.1046/j.1365-2672.1998.00477Suche in Google Scholar
14. Bovenkamp, G. L., Zanzen, U.; Krishna, K. S., Hormes, J. and Prange, A.: X-Ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes and Escherichia coli Appl Environ Microbiol79 (20) (2013) 6385–6390. PMid:23934494; 10.1128/AEM.01688-13Suche in Google Scholar PubMed PubMed Central
15. Yuen, J. W. M. and Yung, J. Y. K.: Medical implications of antimicrobial coating polymers – organosilicon quaternary ammonium chloride Mod Chem appl1 (2013) 107. 10.4172/2329-6798.1000107Suche in Google Scholar
16. Broxton, P., Woodcock, P. M. and Gilbert, P.: A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739 J Appl Bacteriol54 (3) (1983) 345–353. PMid:6348014; 10.1111/j.1365-2672.1983.tb02627.xSuche in Google Scholar PubMed
17. Elieh-Ali-Komi, D. and Hamblin, M. R.: Chitin and chitosan: production and application of versatile biomedical nanomaterials Int J Adv Res4 (3) (2016) 411–427. 10.1081/MC-120006451Suche in Google Scholar
18. Schindler, W. D. and Hauser, P. J.: Chemical finishing of textiles Woodhead Publishing Limited (2004), Cambridge; ISBN: 9781855739055. 10.1201/9781439823477Suche in Google Scholar
19. Simončič, B. and Tomšič, B.: Structures of novel antimicrobial agents for textiles – a review Textile Research Journal80 (16) (2010) 1721–1737. 10.1177/0040517510363193Suche in Google Scholar
20. AATCC 147 Antibacterial activity assessment of textile materials: parallel streak method American association of textile chemists and colorists (2004); Durham.Suche in Google Scholar
21. DIN EN ISO 20645Textile fabrics – Determination of antibacterial activity – Agar diffusion plate testBeuth Verlag GmbH (2004); Berlin.Suche in Google Scholar
22. ASTM E2149Determining the antimicrobial activity of antimicrobial agents under dynamic contact conditionsASTM International (2001); West Conshohocken.Suche in Google Scholar
23. DIN EN ISO 20743Textiles – Determination of antibacterial activity of textile productsBeuth Verlag GmbH (2013); Berlin.Suche in Google Scholar
24. Morris, C. E. and Welch, C. M.: Antimicrobial finishing of cotton with zinc pyrithione Textile Research Journal53 (12) (1983) 725–728. 10.1177/004051758305301202Suche in Google Scholar
25. Singha, R., Jain, A., Panwar, S., Gupta, D. and Khare, S. K.: Antimicrobial activity of some natural dyes Dyes and Pigments66(2) (2005) 99–102. 10.1016/j.dyepig.2004.09.005Suche in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents/Inhalt
- Editorial
- Editorial
- Review Articles
- Developing an Evidence-Based Approach to Domestic Hygiene Which Protects Against Infection Whilst Also Addressing Sustainability Issues
- Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome
- Dishwasher
- Micrococcus luteus – An Alternative Test Germ for Testing the Hygienic Performance of Commercial Freshwater Dishwashers
- Development of a Test Method for Analyzing the Hygienic Performance of Commercial Dishwashers Operating on the Fresh Water Principle
- Microbial Reduction in Low Temperature Dishwashing Cycles
- Laundry
- Laundry Hygiene and Visible Cleanliness: An Attempt to Predict the Antimicrobial Efficacy of Laundering Processes by its Cleaning Performance
- Test Methods
- Test Method Dependent Efficacy of Antibacterial Textiles
- A New Approach for a Practical Assessment of Antimicrobial Surfaces Based on a Stamp Assay to Quantify Transfer Routes of Pathogens
- Towards a Lab-Scale Efficacy Test Method for the Evaluation of Hygienic Laundry Rinse-Stage Disinfectants
Artikel in diesem Heft
- Contents/Inhalt
- Contents/Inhalt
- Editorial
- Editorial
- Review Articles
- Developing an Evidence-Based Approach to Domestic Hygiene Which Protects Against Infection Whilst Also Addressing Sustainability Issues
- Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome
- Dishwasher
- Micrococcus luteus – An Alternative Test Germ for Testing the Hygienic Performance of Commercial Freshwater Dishwashers
- Development of a Test Method for Analyzing the Hygienic Performance of Commercial Dishwashers Operating on the Fresh Water Principle
- Microbial Reduction in Low Temperature Dishwashing Cycles
- Laundry
- Laundry Hygiene and Visible Cleanliness: An Attempt to Predict the Antimicrobial Efficacy of Laundering Processes by its Cleaning Performance
- Test Methods
- Test Method Dependent Efficacy of Antibacterial Textiles
- A New Approach for a Practical Assessment of Antimicrobial Surfaces Based on a Stamp Assay to Quantify Transfer Routes of Pathogens
- Towards a Lab-Scale Efficacy Test Method for the Evaluation of Hygienic Laundry Rinse-Stage Disinfectants