Startseite Test Method Dependent Efficacy of Antibacterial Textiles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Test Method Dependent Efficacy of Antibacterial Textiles

  • Britta Hilgenberg und Lutz Vossebein
Veröffentlicht/Copyright: 5. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Within the course of this investigation five different antibacterial textiles have been tested with four important standards for assessment of antibacterial efficacy (AATCC 147, ASTM E2149, DIN EN ISO 20645 and DIN EN ISO 20743). For some combinations of conducted method and utilized antibacterial textile the results revealed unexpected variations in antibacterial efficacy. This fact could lead to misperception of antibacterial textile efficacy which in turn could result in hygiene deficits for operators or economic losses for manufacturers. Accordingly, there is a strong need for a consistent method for evaluation of antibacterial efficacy so that the comparability of antibacterial textiles and particularly the significance of antibacterial efficacy will be improved.

Kurzfassung

Im Rahmen dieser Arbeit wurde die antibakterielle Wirksamkeit von fünf verschiedenen antibakteriellen Textilien mit vier bedeutenden Standards (AATCC 147, ASTM E2149, DIN EN ISO 20645 und DIN EN ISO 20743) untersucht. Die Ergebnisse einiger Kombinationen von durchgeführter Methode und eingesetztem Textil offenbarten unerwartete Abweichungen in der antibakteriellen Wirksamkeit. Diese Tatsache könnte zu einer Fehleinschätzung von antibakteriellen Textilien führen, woraus wiederum Hygienedefizite für den Anwender sowie wirtschaftliche Schäden für den Hersteller resultieren könnten. Dementsprechend besteht ein hoher Bedarf an einer einheitlichen Methode für die Untersuchung der antibakteriellen Wirksamkeit, so dass die Vergleichbarkeit von antibakteriellen Textilien und insbesondere die Aussagekraft der antibakteriellen Wirksamkeit verbessert werden.


*Correspondence address, Mrs Britta Hilgenberg, Hochschule Niederrhein, Textil- und Bekleidungstechnik, Richard Wagner Str. 97, 41065 Mönchengladbach, Tel.: +49-2161186-6129, Fax: +49-2161186-6013, E-Mail:

Prof. Dr. rer. nat. Lutz Vossebein studied Biology from 1993–1998. After Diploma degree in medical microbiology in 1998 he finished his PhD in biochemistry in 2002 at the “Ruhr-Universität Bochum”, Faculty of Medicine, Institute for Physiological Chemistry.

From 2003 till 2010 he worked as head of department microbiology and hygiene at a cleaning technology research Institute, where he supervised numerous national and international research projects dealing with textile hygiene.

In 2011 he got a full professorship “Textile Technology, Textile Testing and Quality Management” at University of Applied Sciences Niederrhein, Faculty Textile and Clothing Technology. At present he is Dean of the faculty.

Dipl.-Biol. Britta Hilgenberg studied Biology at the Westfälische Wilhelms Universität in Münster. After this, she was working as a project leader in the department for hygiene and microbiology in a research institute for cleaning technology. Currently, she is working on her PhD at the Hochschule Niederrhein, University of Applied Sciences in the Faculty of Textile and Clothing Technology in Mönchengladbach and additionally she is working as a research associate in the Öffentliche Prüfstelle für das Textilwesen der Hochschule Niederrhein GmbH.


References

1. Windler, L., Height, M. and Nowack, B.: Comparative evaluation of antimicrobials for textile applications Environ Int53 (2013) 6273. PMid:23347947; 10.1016/j.envint.2012.12.010Suche in Google Scholar PubMed

2. Lazary, A., Weinberg, I., Vatine, J.-J., Jefidoff, A., Bardenstein, R., Borkow, G. and Ohana, N.: Reduction of healthcare-associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens Int J Infect Dis24 (2014) 2339. PMid:24614137; 10.1016/j.ijid.2014.01.022Suche in Google Scholar PubMed

3. Fijan, S. and Turk, S. S.: Hospital textiles, are they a possible vehicle for healthcare-associated infections? Int J Environ Res Public Health9(9) (2012) 33303343. PMid:23202690; 10.3390/ijerph9093330Suche in Google Scholar PubMed PubMed Central

4. Neely, A. N.: A survey of Gram-negative bacteria survival on hospital fabrics and plastics J Burn Care Rehabil21(6) (2000) 523527. PMid:11194806; 10.1097/00004630-200021060-00009Suche in Google Scholar PubMed

5. Koca, O.; Altoparlak, U.; Ayyildiz, A. and Kaynar, H.: Persistence of nosocomial pathogens on various fabrics Eurasian J Med44 (1) (2012) 2831. 10.5152/eajm.2012.06Suche in Google Scholar PubMed PubMed Central

6. Kramer, A., Guggenbichler, P., Heldt, P., Jünger, M., Ladwig, A., Thierbach, H., Weber, U. and Daeschlein, G.: Hygienic relevance and risk assessment of antimicrobial-impregnated textiles Curr Probl Dermatol33 (2006) 78109. 10.1159/000093938Suche in Google Scholar PubMed

7. Bobbarala, V.: A search for antimicrobial agentsInTech, Rijeka (2012). PMid:23464476; 10.5772/1085Suche in Google Scholar

8. Hipler, U.C. and Elsner, P.: Biofunctional textiles and the skinKarger AG, Basel (2006). 10.1159/isbn.978-3-318-01349-8Suche in Google Scholar

9. Tomšič, B., Simončič, B., Orel, B., Černe, L., Tavčer, P. F., ZorkoIvan, M., Ivan, J., Aljaž, V. and Kovač, J.: Sol–gel coating of cellulose fibres with antimicrobial and repellent properties Journal of Sol-Gel Science and Technology47 (1) (2008) 4457. 10.1007/s10971-008-732-1Suche in Google Scholar

10. Page, K., Wilson, M. and Parkin, I. P.: Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections J Mater Chem19 (2009) 38193831. 10.1039/B818698GSuche in Google Scholar

11. Kaur, R. and Liu, S.: Antibacterial surface design – Contact kill Progress in Surface Science91 (3) (2016) 136153. 10.1016/j.progsurf.2016.09.001Suche in Google Scholar

12. McDonnell, G. and Russell, D.: Antiseptics and disinfectants: activity, action, and resistance Clin Microbiol Rev12 (1) (1999) 14779. PMid:9880479;Suche in Google Scholar

13. Dinning, A. J., Al-Adham, I. S. I., Austin, P., Charlton, M. and Collier, P. J.: Pyrithione biocide interactions with bacterial phospholipid head groups J Appl Microbiol85 (1) (1998) 132140. PMid:9721663; 10.1046/j.1365-2672.1998.00477Suche in Google Scholar

14. Bovenkamp, G. L., Zanzen, U.; Krishna, K. S., Hormes, J. and Prange, A.: X-Ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes and Escherichia coli Appl Environ Microbiol79 (20) (2013) 63856390. PMid:23934494; 10.1128/AEM.01688-13Suche in Google Scholar PubMed PubMed Central

15. Yuen, J. W. M. and Yung, J. Y. K.: Medical implications of antimicrobial coating polymers – organosilicon quaternary ammonium chloride Mod Chem appl1 (2013) 107. 10.4172/2329-6798.1000107Suche in Google Scholar

16. Broxton, P., Woodcock, P. M. and Gilbert, P.: A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739 J Appl Bacteriol54 (3) (1983) 345353. PMid:6348014; 10.1111/j.1365-2672.1983.tb02627.xSuche in Google Scholar PubMed

17. Elieh-Ali-Komi, D. and Hamblin, M. R.: Chitin and chitosan: production and application of versatile biomedical nanomaterials Int J Adv Res4 (3) (2016) 411427. 10.1081/MC-120006451Suche in Google Scholar

18. Schindler, W. D. and Hauser, P. J.: Chemical finishing of textiles Woodhead Publishing Limited (2004), Cambridge; ISBN: 9781855739055. 10.1201/9781439823477Suche in Google Scholar

19. Simončič, B. and Tomšič, B.: Structures of novel antimicrobial agents for textiles – a review Textile Research Journal80 (16) (2010) 17211737. 10.1177/0040517510363193Suche in Google Scholar

20. AATCC 147 Antibacterial activity assessment of textile materials: parallel streak method American association of textile chemists and colorists (2004); Durham.Suche in Google Scholar

21. DIN EN ISO 20645Textile fabrics – Determination of antibacterial activity – Agar diffusion plate testBeuth Verlag GmbH (2004); Berlin.Suche in Google Scholar

22. ASTM E2149Determining the antimicrobial activity of antimicrobial agents under dynamic contact conditionsASTM International (2001); West Conshohocken.Suche in Google Scholar

23. DIN EN ISO 20743Textiles – Determination of antibacterial activity of textile productsBeuth Verlag GmbH (2013); Berlin.Suche in Google Scholar

24. Morris, C. E. and Welch, C. M.: Antimicrobial finishing of cotton with zinc pyrithione Textile Research Journal53 (12) (1983) 725728. 10.1177/004051758305301202Suche in Google Scholar

25. Singha, R., Jain, A., Panwar, S., Gupta, D. and Khare, S. K.: Antimicrobial activity of some natural dyes Dyes and Pigments66(2) (2005) 99102. 10.1016/j.dyepig.2004.09.005Suche in Google Scholar

Received: 2018-03-23
Accepted: 2018-05-16
Published Online: 2018-09-05
Published in Print: 2018-09-14

© 2018, Carl Hanser Publisher, Munich

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110581/html
Button zum nach oben scrollen